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 This thesis reports the crystallization of two new quasiracemates, the synthesis of 

a new oxadiazinanone and the identification of crystals of two new compounds. In 

previous research the quasiracemates, (5R,6S )-4-cyclohexyl-5-methyl-6-phenyl-2H-

1,3,4-oxadiazinan-2-one and (5S,6R)-4-isopropyl-5-methyl-6-phenyl-2H-1,3,4-

oxadiazinan-2-one, were mixed in solution and crystallized.  Instead of fractionally 

crystallizing, as would be expected, the compounds formed quasiracemic co-crystals. 

This suggested that other mixtures of oxadiazinanones would be possible candidates for 

studying compounds which fail to fractionally crystallize.  

 The first step in the process involves the synthesis of oxadiazinanones, using 

literature methods.  A 4-step process is employed involving alkylation, nitrosation, 

reduction and cyclization. Because the starting material, norephedrine, is a chiral 

molecule, the desired enantiomer is synthesized starting with the proper enantiomer of 

norephedrine—either the (1S,2R) or 1(R,2S) enantiomers.  A new oxadiazinanone, 

(5R,6S)-4-cyclopentyl-5-methyl-6-phenyl-2H-1,3,4-oxadiazinan-2-one, was synthesized. 

After synthesis, the oxadiazinanones are mixed together and crystallized using vapor 



www.manaraa.com

diffusion. X-ray diffraction is used to study the structures to determine the presence of 

quasiracemates. 

 From the sixteen racemic pairs compared, it was found that quasiracemates were 

formed from oxadiazinanones containing either an N4-cyclopentyl substituent or an N4-

cyclohexyl substituent. The quasiracemate formed has a lower Z’ than at least one of the 

quasienantiomers in the structure.  

 Two additional compounds were synthesized, and the crystal structures were 

identified . These crystals were obtained when the intended N4-ethylated and N4-n-

butylated oxadiazinanones failed to cyclize in the final step of the oxadiazinanone 

synthesis. 
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CHAPTER I 
 

OXADIAZINANONE RESEARCH-HOW AND WHY? 
 

Fractional Crystallization 

 Typically, when different compounds are mixed together and crystallized, the 

components of the mixture crystallize as pure compounds. This happens at different times 

based on the solubility of each of the compounds. This process, called fractional 

crystallization, is used as a separation technique in industrial applications.  In a solution, 

the desired product is usually present in a greater concentration than the impurities and, 

generally, is deposited first. The impurities are left in solution. The failure to fractionally 

crystallize occurs when one of the compounds co-crystallizes with another compound 

also present in the solution. This results in a new crystalline product which is a 

combination of the original compounds.1  

 Several conditions seem to increase the likelihood of co-crystallization. 

When enantiomers crystallize they almost always co-crystalize as the corresponding 

racemate. This is due to the presence of symmetry elements, such as inversion or glide 

planes, which are very favorable to crystal-packing as well as the fact that both 

enantiomers have identical physical properties, including solubility. In fact, the 

occurrence of fractional crystallization of enantiomers is so rare it is given a special 

name, spontaneous resolution. When a crystal has inversion or glide planes as symmetry 

elements, the crystal is able to pack more densely which decreases the size of the crystal. 

1 
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This decrease in size and increase in density is favorable to crystal. packing.2 

Quasiracemates, as defined by the International, Union of Pure and Applied Chemistry 

(IUPAC),  are crystals composed of a 1:1 ratio of  “almost enantiomers.”3 Husebye, in the 

1960s, reported that quasiracemates generally have structures with a great deal of 

similarity to the corresponding racemates. This observation may provide some support to 

the importance of inversion symmetry in co-crystallization.1, 4 Quasiracemates, because 

they have pseudo inversion centers, may be able to pack in a smaller volume, thus 

reducing the size of the asymmetric unit in the same manner as the co-crystallization 

observed in racemates.  

In addition to strong inversion symmetry, hydrogen-bonding contributes to co-

crystallization.2 Hydrogen bonds are somewhat elastic and this elasticity allows the 

distances and angles to vary at a small cost in energy which simplifies the bonding in a 

co-crystal. Therefore, there are a large number of co-crystals with either a carboxylic 

group or an amide group.1  

Often, however, it is difficult to determine the reason for co-crystallization. 

Kelley et al, created a list of quasiracemic crystals.1 The definition the researchers 

employed stated that quasiracemic crystals are co-crystals formed by molecules which 

are almost enantiomers but differ by the substitution of a few atoms. Of particular note is 

that the researchers found the formation of quasiracemic crystals is rare. In 2011 there 

were over 400,000 structures in the Cambridge Structural Database. Of these, only 114 

quasiracemates were identified as quasiracemates.1  

2 
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A Brief History of Quasienantiomer Research 

Louis Pasteur’s earliest chemical studies were in the field of crystallography. In 

1846, he found that tartaric acid had optical activity, but paratartaric acid had none 

leading him to believe there were two kinds of crystals present although most other 

chemical properties were the same in the two compounds. He noticed that the edges of 

the crystals were asymmetrical—the surfaces on some of them were facing right and 

some, left. Using a dissecting needle and a microscope, he separated the crystals into two 

piles based on these differences. He recognized the difference in optical activity, 

extended his observations to the molecular level and realized that the two kinds of 

crystals were mirror images. He wrote his doctoral dissertation on this subject in 1847.5, 6  

The basis for chirality and stereoisomerism was laid by van’t Hoff and Le Bel in 

1874 when, independently, they each proposed the existence of tetrahedral carbon with a 

tetrahedral valence. In consequence of this, the idea of enantiomerism came into being. 

Enantiomers are compounds with the same chemical constitution which are mirror-

images of each other, but are non-superimposable.7 William Thomson, (Lord Kelvin), 

first introduced this definition in 1883 at a lecture given to the Oxford University Junior 

Scientific Club.8 It was not reintroduced into stereochemical literature until 1965 by 

Mislow9 and 1966  Cahn, Ingold and Prelog.5  

In 1899, Centnerswer studied a 1:1 mixture of (-)-bromosuccinic acid (Figure 1.1 

left) and (+)-chlorosuccinic acid Figure 1.1  right).7, 10 He found that this mixture had 

phase properties similar to those of the corresponding true racemic compounds for each 

of the molecules. The mixture contained neither isomers nor enantiomers, but had an 

“almost” or “pseudo” mirror-image relationship.7, 10  

3 
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Figure 1.1  Comparison of (left) chlorosuccinic acid and (right) bromosuccinic acid. 
 

 Most of the studies of quasiracemates, and the reasons for their formation, were 

conducted in the 1960s and 1970s by A. Fredga.11 Fredga, in 1960, first used the term 

“quasi-racemate” to distinguish this class of compounds.12 This research used melting 

point phase diagrams and found that these sufficed to determine true racemic compounds, 

racemic conglomerates, as well as quasiracemates. A racemic conglomerate is a mixture 

of two types of crystals where each crystal is composed of only one enantiomer, but the 

entire mixture has an equimolar amount of both enantiomers.3 This study provided clear 

evidence for the presence of quasiracemates, identified necessary criteria for the selection 

of sterically similar molecules, and used the molecular topology to design new 

quasiracemates.11  

In 1966, Jerome and Isabella Karle determined the structure of the 

quasiracemates, (R)-2-(3-bromophenoxy) propionic acid and (S)-2-(3-methoxyphenoxy) 

propionic acid (Figure 1.2).13 Their study of the  pseudo inversion symmetry of this 

quasiracemate proved to be one of the first investigations into packing motifs in 

quasiracemates. The relationship of inversion packing to packing motif is now firmly 

established.12  

4 
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CO2H
(S)

OH3CO

HO2C
(R) O Br

 

Figure 1.2  The quasiracemate of (R)-2-(3-bromophenoxy)propionic acid (right) and (S)-
2-(3-methoxyphenoxy)propionic acid (left). 
 
 

In the 1990’s the late Margaret Etter, a pioneer in crystal engineering, studied 

hydrogen bonding motifs in crystals. The research gave insight into the role of hydrogen-

bonding in controlling the structures of crystals. The use of graph-sets in describing these 

motifs has been useful in understanding crystal structure and comparing and contrasting 

sets of molecules. The terminology proposed by Etter et al., 1990 has been in use for the 

past twenty years.14 

In 2002, Fomulu et al. proposed several considerations for the design and 

synthesis of quasiracemates using Fredga’s quasiracemates as a starting point.11 These 

considerations include the fact that the two quasienantiomers need to be isosteric, unique 

in chemical composition, and opposite in handedness. In addition, it is helpful to have a 

high degree of similarity between the two components with the presence of hydrogen 

donor and acceptor groups.11 These factors are relevant to our study of quasienantiomers 

of oxadiazinanones. 

 

Terminology and Basic Principles 

 Knowledge of basic terminology and principles are important to the 

understanding of this research; therefore, it is worthwhile to include a review.  

5 
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Enantiomers are compounds which have the same chemical formulas and the same 

constitutions, but have different three-dimensional structures which are related by a 

mirror plane as noted in Figure 1.3. 

 
 

CH3

(S)

Br
H

HO2C

CH3

(R)

Br
H

CO2H

 
 

Figure 1.3  On the left is (S)-2-(2-bromo)propionic acid and on the right is (R)-2-(2-
bromo)propionic acid. 
 
 
The IUPAC definition for a racemate is a composite of equimolar quantities of both 

enantiomers of a compound.3, 7 Because of the equimolarity of the enantiomers, a racemic 

mixture will not have optical activity as noted by Pasteur.6  

A quasiracemate is a compound composed of two “almost” or similar 

enantiomers. There is some ambiguity in the definition due to the use of the word, 

“similar.” In an article by Fumulo et al., the definition is worded as “a molecular crystal 

derived from a true racemate by a not-too-extensive change in the structure of one of the 

two enantiomeric components.”11 How similar do the enantiomers need to be? The two 

molecules in Figure 1.4 are almost alike differing only by the Br or Cl atom. The bromine 

in the structure on the left has been replaced by chlorine in the structure on the right, as 

6 
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indicated by the arrows. The two molecules in Figure 1.5 also differ at only one point, but 

the difference involves many more atoms.  

 

 

Figure 1.4  Quasienantiomers which differ only because one molecule has a Cl atom 
instead of a Br atom. The dotted line represents a mirror plane. 
 
 

 

Figure 1.5  Quasienantiomers which only differ in the presence of a methyl group in 
one(top) and a tri-isopropyl silyl ether functional group in the other (bottom). The dotted 
line represents a mirror plane.7 
 
 
 Comparing Figures 1.4 and 1.5, one can see there is a much greater difference 

between the quasienantiomers in Figure 1.5 than those in Figure 1.4. The methyl (Me) 
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group in the structure on top in Figure 1.5 has been exchanged for a tri-isopropyl silyl 

ether group in the bottom structure. Although all of the other atoms in the structures are 

identical in identity and location, the molecules seem to be quite different. 

  It is difficult, therefore, to define quasiracemate in a very specific manner. To 

crystallographers, the definition most generally refers to a crystal comprised of 

compounds that are very nearly enantiomers with differences of a small number of atoms. 

This is a very “loose” definition as the “small number” can vary greatly. To synthetic 

chemists, the difference in the quasienantiomers could be a small such as the difference 

in a methyl and an isopropyl group or, at the other extreme, the difference could be very 

large like the difference between a methyl and a polystyrene group.  In the present 

research, a general supposition has been made that the quasienantiomers are closely 

related and able to form a co-crystal. 

 Crystallography has a unique vocabulary and a short review may prove to be 

helpful. Crystals are an arrangement of atoms repeating in a three-dimensional pattern.15 

The arrangement can go infinitely in all directions by repeating the basic unit of the 

crystal. This basic unit is called the unit cell. Each unit cell has the same atomic contents 

arranged in the same way.  The atoms within the unit cell can be further reduced to an 

asymmetric unit. An asymmetric unit is the smallest unit of volume that contains all of 

the structural  information about the crystal. By applying symmetry operations to the 

asymmetric unit, such as inversion, translation, reflection, etc., the unit cell can be 

reproduced. The number of molecules in the asymmetric unit is designated by Z’ and the 

number of molecules in the unit cell is designated as Z.15  
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Oxadiazinanone-What is in a Name?  

The typical nomenclature of the oxadiazinanones can be confusing as one looks 

over the literature of the last thirteen years. This is evidenced by looking at the titles of 

papers authored or co-authored by Dr. G.M. Ferrence. In 2001, research involving 

3,4,5,6-tetrahydro-2-H-1,3,4-oxadiazin-2-one was reported.16 In articles published in 

2002,  research was also published reporting N3-substituted [1,3,4]-oxadiazinan-2-ones.17 

In 2004, one finds research on a group of compounds called oxadiazinones.18 In 2008, 

two papers were written on research involving chirality and substituted 1,3,4-

oxadiazinan-2-ones.19a,19b  In 2009 a paper was published on (5S,6R)-4-isopropyl-5-

methyl-6-phenyl-3-propanoyl-2H-1,3,4-oxadiazinan-2-one.20 A slight variation is found 

in 2009 when the compound is a thione instead of a ketone. In this case the nomenclature 

changes to (5S,6R)-5-methyl-6-phenyl-4-propyl-1,3,4-oxadiazinane-2-thione.21  Why the 

differences? What do the different names mean?  

IUPAC recommends using the Hantzsch-Widman nomenclature in the naming of 

heterocycles.22 The rings are named by combining prefixes with a stem. In the case of 

oxadiazinanones, the prefix ‘oxa’ refers to the oxygen atoms in the ring and the ‘az’ to 

the nitrogen atoms in the ring; the ‘di’ reflects the fact there are two nitrogen atoms.  The 

order of the names of the heteroatoms is dictated by IUPAC as O, N, and, then, S. Other 

atom preferences are listed in the literature.23 Typically the ‘az’ would be ‘aza,’ but 

phonetics dictates the omission of the final ‘a.’ This type of omission is called eliding. 

The stem for a saturated 6-member heterocycle with nitrogen and oxygen in the ring is 

‘inane’ but in the case of these compounds the final ‘e’ is omitted, again, for phonetic 

reasons. In some cases the stem ‘inane’ is changed to ‘ine’ and the saturated atoms that 
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are present in the compound are denoted by using terms such as ‘tetrahydro,’ or 

‘dihydro.’  Because oxadiazinanones are ketones, the name of the compound ends in 

‘one.’ The numbering in heterocyclic rings becomes necessary when substituents are 

placed on the ring. The numbering begins with a hetero-atom, and then the substituents 

are numbered so that the lowest combination of numbers is assigned. The substituents are 

placed in alphabetical order. The positions of the substituents play no role in the order of 

the numbering. The substituents are included in alphabetical order preceded by the 

number of the atom to which they are attached.23 In addition to these rules, unsaturated 

atoms located in the ring are designated by using ‘H.’ This reflects that the parent hydride 

would have hydrogen atoms in this position. 

Using the compound in Figure 1.6 as an example, the proper nomenclature will be 

discussed. In this heterocycle the chirality is described by (5S,6R). 

 

 

 
Figure 1.6  Line drawing of (5S,6R)-4-cyclopentyl-5-methyl-6-phenyl-2H-1,3,4-
oxadiazinan-2-one. 
 
 
The substituents are listed in alphabetical order with the number of the atom to which 

they are attached preceding the name of the substituent. The order of the atom numbers is 

chosen by starting with the oxygen atom as atom 1 and then numbering the rest. This 
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numbering scheme results in the lowest combination of position-numbers of heteroatoms 

as possible. The 2H indicates an atom where the parent hydride would have hydrogen 

atoms affixed, but it does not in this molecule because of the carbonyl group.  The “1,3,4-

oxadiaz” portion of the name refers to the oxygen atom and two nitrogen atoms in the 

heterocycle. The substituents are arranged in alphabetical order preceded by the atom 

number to which they are attached. The prefix, “inan,” refers to a saturated heterocycle 

containing nitrogen. The stem, “2-one,” refers to the fact that this is a ketone with the 

carbonyl on atom 2. 

Why Study Quasiracemates? 

Some reasons for the study of quasienantiomers given in a review by Zhang and 

Curran are that they can be used as tools for enantiomer identification, enantiomer 

analysis, separation of chemical components and enantiomer synthesis.7 Although all of 

these pragmatic uses are valuable, the current study is more esoterically focused on how 

and why oxadiazinanones form quasiracemates. This is related to the discussion of 

Fomolu and co-workers about the study of quasiracemates in the field of supramolecular 

chemistry. Using comparisons of quasiracemate, enantiomer, and racemate crystals, the 

molecular architecture can be studied.11 The database of quasiracemic crystals needs to 

be as large as possible in order to determine general principles which cause the 

crystallization of quasiracemic crystals. 

Additionally, oxadiazinanones have been synthesized fairly easily using methods 

developed by Hitchcock and his group.24, 25 Decent yields have been reported. The 

compounds are easily purified with flash chromatography. Optically pure norephedrine or 

ephedrine starting materials result in optically pure substituted oxadiazinanones. 
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Previous Quasiracemic Crystal Research 

The research group of Dr. Shawn Hitchcock at Illinois State University has 

synthesized and studied a variety of oxadiazinanones as a route to forming chiral 

auxiliaries for pharmaceutical studies.25 In an effort to understand some principles of 

crystal structure and chirality, Kate Edler used these immediately-available 

oxadiazinanones in her research.26 In the course of the research, serendipitously, she 

mixed together norephedrine-based (5S,6R)-4-isopropryl-5-methyl-6-phenyl-2H-1,3,4-

oxadiazinan-2-one and (5R,6S)-4-cyclohexyl-5-methyl-6-phenyl-2H-1,3,4-oxadiazinan-

2-one in approximately equal molarities. These crystals resulted in the first of the 

quasiracemic oxadiazinanone crystals studied by the Ferrence group.26   

Ignoring epimers, there are two oxadiazinanone enantiomers for each 

norephedrine derived N-4-substituted variant. Figure 1.7 shows a line drawing of 

(5R,6S)-6-phenyl-4-R-(1,3,4)-oxadiazin-2-one. The arrow points to the nitrogen with the 

substituted variant. 
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Figure 1.7  Line drawing of (5R,6S)-4-R-5-methyl-6-phenyl-1,3,4-oxadiazinan-2-one. 
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For example, using the cyclopentyl functional group, the two oxadiazinanone 

structures in Figure 1.8, when crystallized, form a racemic crystal. 
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Figure 1.8  Line drawing of (left) (5R,6S)-4-cyclopentyl-5-methyl-6-phenyl-2H-1,3,4-
oxadiazinan-2-one and (right) (5S,6R)-4-cyclopentyl-5-methyl-6-phenyl-2H-1,3,4-
oxadiazinan-2-one. 

 
 
If an isopropyl group is substituted for the cyclopentyl group (structure on the left 

in Figure 1.8) and a cyclohexyl group for the cyclopentyl group (structure on the right), 

the resulting compounds are shown in Figure 1.9. These compounds cocrystallize 

forming a quasiracemic crystal. 
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Figure 1.9  Line drawings of (left) (5R,6S)-4-isopropryl-5-methyl-6-phenyl-2H-1,3,4-
oxadiazinan-2-one and (right) (5S,6R)-4-cyclohexyl-5-methyl-6-phenyl-2H-1,3,4-
oxadiazinan-2-one. 
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The fact that the oxadiazinanones in Figure 1.9 formed quasiracemic crystals begs 

the question: would other oxadiazinanones do so as well? To further explore the 

possibility, it was necessary to acquire a number of oxadiazinanones which varied at the 

N4 position in both (5S,6R) and (5R,6S) configurations.  

The synthesis of these compounds uses either ephedrine (for methyl-substitution) 

or norephedrine as a starting reactant.27 The resulting oxadiazinanone quasienantiomers 

are then mixed and crystallized in an attempt to form the corresponding quasiracemate. 

Finally, the crystal structures are studied in an attempt to determine what causes some 

oxadiazinanone quasienantiomers to cocrystallize and others to fractionally crystallize.
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CHAPTER II 

EXPERIMENTAL 

Synthesis of Oxadiazinanones Used in Crystallographic Studies 

All oxadiazinanone compounds used in this research were either acquired from 

the lab of  Dr. Shawn Hitchcock or synthesized using procedures, or adaptations thereof, 

devised by the Hitchcock group.27  The compound, (5R,6S)-4-cyclopentyl-5-methyl-6-

phenyl-2H-1,3,4-oxadiazinan-2-one, and its precursors are newly-synthesized products.  

The synthesis of the ethyl derivative of the oxadiazinanone and the n-butyl derivative of 

the oxadiazinanone, instead of producing the desired oxadiazinanones, resulted in newly-

synthesized noncyclized compounds. In addition to these newly-synthesized compounds, 

two new quasiracemates were formed when (5R,6S)-4-cyclopentyl-5-methyl-6-phenyl-

2H-1,3,4-oxadiazinan-2-one was crystallized with (5S,6R)-4-cyclohexyl-5-methyl-6-

phenyl-2H-1,3,4-oxadiazinan-2-one and separately with (5S,6R)-4-isopropyl-5-methyl-6-

phenyl-2H-1,3,4-oxadiazinan-2-one. 

The synthesis of oxadiazinanones includes four main steps: alkylation, 

nitrosation, hydrazine-formation, and cyclization. Figures 2.1, 2.3, 2.5, and 2.6 show the 

steps in the reaction using the cyclopentane derivative as an example: Figure 2.2 gives 

the mechanism for the reductive alkylation. Table 2.1 shows which alkyl groups were 

added to N4 as a substituent.
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Figure 2.1  Step 1: Reductive alkylation of (1S,2R) norephedrine. 
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Figure 2.2  Mechanism for the reductive alkylation of an amine.28 
 
 
Table 2.1  Aldehydes and ketones used in the synthesis of N4 substituted norephedrine.  
 

N4 Substituent Reactant 
ethyl acetaldehyde 
n-propyl propanal 
isopropyl acetone 
n-butyl butanal 
cyclohexyl cyclohexanone 
cyclopentyl cyclopentanone 
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 Figure 2.3 shows the reaction for the nitrosation of the alkylated norephedrine and 

the mechanism for the reaction is shown in Figure 2.4. 

OH
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derivative of

(1S,2R)norephedrine  
 
Figure 2.3  Step 2: Nitrosation of the alkylated derivative of (1S,2R) norephedrine. 
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Figure 2.4  Mechanism for the nitrosation of an alkylated norephedrine.28  

17 



www.manaraa.com

 
 

The nitrosate of the alkyl derivative of the norephedrine is part of a group of 

compounds known to be carcinogenic, so great care must be used to avoid contact with 

the compound during the synthesis.29  

At the conclusion of Steps 1 and 2, 1H nuclear magnetic resonance spectroscopy 

(1H NMR) analysis is used to ascertain that the proper product is formed in sufficient 

purity to continue the synthesis. When the product is not what is expected or is in low 

yield, typically, the step can be repeated to obtain the desired product and the synthesis 

can continue.  When purification of the product is needed, flash chromatography is 

utilized. 

 

 

Figure 2.5  Step 3: Hydrazine-formation from the reduction of  the nitrosate of the alkyl 
derivative of (1S,2R) norephedrine. 
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Figure 2.6 Step 4: Cyclization of the hydrazine forming the 1,3,4 oxadiazinanone. 
 
 
 Steps 3 and 4 are completed with as little delay between them as possible because 

the hydrazine is not stable. 1H NMR testing is typically not done after Step 3 as the 

hydrazine cannot be purified at this point and remain stable, so the synthesis must 

continue. Bentley, in his thesis, proposed mechanisms for the third and fourth steps of the 

procedure; these will not be further explored here.28 

Change in 1H NMR After Nitrosation of Alkyl Derivative 

 The rotamer diastereomers for the nitrosate are shown in Figure 2.7. The rotamer 

on the right results in having a doublet at 0.8 ppm in the 1H NMR spectrum. The rotamer 

on the left results in a second doublet further downfield at 1.6 due to the shielding of the 

oxygen atom in the nitrosate. According to Hitchcock, Casper et al.29 the two rotamers 

exist because the resonance of the N=O bond in the structure creates a barrier to rotation 

of the N-N=O moiety. The N-N bond does not rotate until very high temperatures are 

obtained so both rotamer diastereomers occur simultaneously in the nitrosate of the 

alkylated derivative of norephedrine. These two rotamers  help to verify the presence of 

the nitrosate.  
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The 1H NMR spectra of the alkylated derivative, as seen in Figure 2.8, has a 

doublet at 0.8 ppm indicating the presence of the methyl group. However, when the N-

nitroso amine is formed in the second step of the synthesis, the 1H NMR spectra in Figure 

2.9 shows two doublets for the methyl group—one doublet at 0.83 ppm and one 

downfield at 1.6`. This results from the formation of two diastereomeric rotamers (Figure 

2.7) which exist as major and minor species in the product.  
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Figure 2.7 The (E)-rotamer (left) and the (Z)-rotamer (right) of the nitrosamines of the  
cyclopentyl derivatives of (1S,2R) norephedrine. 
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Figure 2.8 1H NMR spectrum of the cyclopentyl derivative of (1S,2R) norephedrine. 
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Figure 2.9 1H NMR spectrum of the nitrosate of the cyclopentyl derivative of (1S,2R) 
norephedrine. Note the presence of the two doublets caused by the two different nitrosate 
rotamers. 
 
 

Experimental Procedure for the Synthesis of (5R,6S)-4-Cyclopentyl-5-methyl-6-
phenyl-2H-1,3,4-oxadiazinan-2-one, 1  

 
Alkylation: (1S,2R) norephedrine (10.00 g, 66.13 mmol) and cyclopentanone (7.00 g, 

83.2 mmol) were added to a nitrogen-purged, 1 L round-bottom flask with ethanol (100 

mL). The mixture was refluxed for 24 hours, cooled in an ice bath and NaBH4 (6.26 g, 

165 mmol) was added over a period of approximately 30 minutes. The flask was removed 

from the ice and ethanol was added (100 mL). After the mixture was stirred for an 

additional 2.5 hours, 1M NaOH (100 mL, 100 mmol) was added. Ethanol was removed 

from the solution using rotary evaporation, and the product was extracted with ethyl 

acetate, washed with brine, and dried over sodium sulfate resulting in the cyclopentyl 
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derivative of (1S,2R) norephedrine (13.73 g, 76.24 mmol). 1H NMR spectroscopy was 

used to ascertain the purity of the sample, and it was determined that the product was not 

fully alkylated. The product was then refluxed overnight under the same conditions and 

with the same reagents as described previously resulting in the desired product.   

Nitrosation: The cyclopentyl derivative of (1S,2R) norephedrine was nitrosated by adding 

3M HCl (25 mL, 75 mmol) to the alkylated norephedrine. Approximately 60 mL of 

tetrahydrofuran (THF) was added, and the mixture was stirred. To the mixture NaNO2 

(5.5 g, 79 mmol) was added. The solution turned pink. The reaction was allowed to 

proceed for 4 days. Sodium bicarbonate (saturated solution) was added to reach a pH of 

8. THF was removed by rotary evaporation. The final product was extracted with ethyl 

acetate, washed with brine and dried over Na2SO4. The ethyl acetate was removed by 

rotary evaporation resulting in the nitrosated cyclopentyl derivative of (1S,2R) 

norephedrine (8.19 g, 33.0 mmol). One gram was removed for further research and the 

rest of the product was reduced. 

Reduction: Hexanes (200 mL) were added to a flame-dried, nitrogen-purged, 2 L round-

bottom flask.  Lithium aluminum hydride (2.29 g, 60.3 mmol) was added to the flask 

followed by the addition of THF (approximately 600 mL). The nitrosated cyclopentyl 

derivative of (1S,2R) norephedrine (7.19 g, 29.0 mmol) was dissolved in THF (100 mL) 

and added, dropwise, to the flask. The reaction was gently refluxed for three hours, and, 

then, cooled in an ice bath. Then, 1M NaOH (200 mL, 200 mmol) was added. Rotary 

evaporation was used to remove the THF. The product was extracted with ethyl acetate, 

washed with Rochelle’s solution and brine, and dried over NaSO4. The ethyl acetate was 
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removed by rotary evaporation resulting in the hydrazine, an oily, yellow product (5.24 g, 

22.4 mmol). 

Cyclization: The hydrazine was dissolved in hexanes (144 mL) in a flame-dried, nitrogen-

purged 1 L round-bottom flask. Diethyl carbonate (2.98 mL, 24.6 mmol) was added to 

the flask and the solution was refluxed under nitrogen for 16 hours. The resulting product 

was cooled in an ice bath and the hexanes were removed by rotary evaporation. The 

resulting product was dissolved in ethyl acetate (123 mL), washed with 1M HCl (3 x 

15mL) and brine, and dried over sodium sulfate. Rotary evaporation was used to remove 

the ethyl acetate and a yellow, oily solid was obtained (5.16 g). Crystallization of the 

final product was achieved by dissolving the product in ethyl acetate and adding hexanes 

as an anti-solvent, resulting in a crystalline product (1.18 g, 4.53 mmol). The percent 

yield was 6.85%. 

Experimental Procedure for the Intended Synthesis of (5R,6S)-4-Ethyl-5-methyl-6-
phenyl-2H-1,3,4-oxadiazinan-2-one, 5 

 
The synthesis of  (5R,6S)-4-ethyl-5-methyl-6-phenyl-2H-1,3,4-oxodiazinanan-2-

ne proved to be problematic. Using acetaldehyde was difficult because it has such a low 

boiling point that it evaporated before the reaction occurred. Thus acetic anhydride was 

used, producing an amide derivative which was then reduced by NaBH4 and I2 followed 

by nitrosation.24 This method resulted in a mixture of the amide and amine and other 

unknown compounds. Two grams of the amide were produced to use for future study. 

The initial procedure was once again tried with a large excess of acetaldehyde. The 

acetaldehyde was stored in a freezer at 0 °C prior to use. Nitrosation followed and flash 

chromatography was used to purify the nitrosated compound. The 1H NMR spectrum 
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indicated the proper compound was made. However, after the product was reduced, 

cyclized and then purified using flash chromatography, X-ray diffraction analysis 

determined the structure in Figure 2.10. This structure indicates the cyclization had not 

been completed. The specifics of the synthesis follow. 

 

OH

(S) (R) N

CH3

HN O

O

 
 

 
Figure 2.10  Line drawing of 5. This is not an oxadiazinanone, but the product of an 
oxadiazinanone reaction which did not cyclize. 
 
 
Alkylation: (1S,2R) norephedrine (10.00 g, 66.13 mmol) and acetaldehyde (7.4 mL, 130 

mmol) and ethanol (100 mL) were added to a nitrogen-purged, 1L round-bottom flask. 

The syringe used to add the acetaldehyde was placed in the freezer before use in an 

attempt to reduce the evaporation of the aldehyde. The mixture was refluxed for 24 hours 

and cooled in an ice bath. NaBH4 (6.24 g, 165 mmol) was added over a period of 

approximately 30 minutes. The flask was removed from the ice and ethanol was added 

(100 mL). After the mixture was stirred for an additional 2.5 hours, 1M NaOH (100 mL, 

100 mmol) was added. Ethanol was removed using rotary evaporation. The resulting 

product was extracted with ethyl acetate, washed with brine, and dried over sodium 
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sulfate resulting, in the ethyl derivative of (1S,2R) norephedrine (11.91 g, 66.50 mmol). 

1H NMR analysis revealed the product was pure and nitrosation could take place. 

Nitrosation: The ethyl derivative of (1S,2R) norephedrine was nitrosated by, first, adding 

3M HCL (25 mL, 75 mmol) to the alkylated product and then adding THF (50 mL). The 

mixture was stirred. Sodium nitrite (5.6 g, 79 mmol) was added and the reaction was 

allowed to stir overnight. The solution was orange-brown in color. Sodium bicarbonate 

(saturated solution, 50 mL) was added until the solution reached a pH of 8. THF was 

removed by rotary evaporation. The final product was extracted with ethyl acetate, 

washed with brine, and dried over Na2SO4. The ethyl acetate was removed by rotary 

evaporation resulting in the nitrosated ethyl derivative of (1S,2R) norephedrine. 1H NMR 

spectroscopy indicated the product needed purification. This was accomplished using 

flash chromatography resulting in the final crystalline product. (3.97 g, 19.1 mmol). 

Reduction: Hexanes (200 mL) were added to a flame-dried, nitrogen-purged, 2L round-

bottom flask.  Lithium aluminum hydride (0.9737 g, 38.15 mmol) was added to the flask 

followed by the addition of THF (600 mL). The nitrosated ethyl derivative of (1S,2R) 

norephedrine (3.97 g, 19.1 mmol) was dissolved in THF (100 mL) and added, drop-wise, 

to the flask. The reaction was gently refluxed for three hours, cooled in an ice bath, and 

1M NaOH (200 mL, 200 mmol) was added. Rotary evaporation was used to remove the 

THF, and the product was extracted with ethyl acetate andwashed with Rochelle’s 

solution. Then it was washed with brine, and dried over NaSO4. The ethyl acetate was 

removed by rotary evaporation resulting in the hydrazine, an oily, yellow product (2.49 g, 

12.8 mmol). 
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Cyclization: The hydrazine was dissolved in hexanes (144 mL) in a flame-dried and 

nitrogen-purged 1L round-bottom flask. Diethyl carbonate (1.7 mL, 21 mmol) was added 

to the flask and the solution was brought to reflux. Lithium hydride (0.33 g, 42 mmol) 

was added slowly and the solution was refluxed under nitrogen overnight. The resulting 

product was cooled and hexanes were removed by rotary evaporation. The resulting 

product was dissolved in ethyl acetate (123 mL), washed with 1M HCl, washed with 

brine, and dried over sodium sulfate. Rotary evaporation was used to remove the ethyl 

acetate and a yellow, oily compound was obtained (5.16 g). The resulting product was 

dissolved in ethyl acetate and hexanes were added to cause the product to crystallize 

(2.19 g, 9.95 mmol). The percent yield was 15.1%. 

Experimental Procedure for the Intended Synthesis of (5R,6S)-4-Ethyl-5-methyl-6-
phenyl-2H-1,3,4-oxadianinan-2-one, 6 

 
In an attempt to synthesize (5R,6S)-4-ethyl-5-methyl-6-phenyl-2H-1,3,4-

oxadiazinanan-2-one using standard literature procedures27 the compound depicted in the 

ChemDraw30 figure in Figure 2.11 was synthesized and was identified using X-ray 

diffraction indicating the cyclization reaction had not gone to completion. 

OH

(S)
(R) N

CH3

HN O

O

 
 

Figure 2.11  Line drawing of 6. This is not an oxadiazinanone, but, instead is the product 
of an oxadiazinanone reaction which did not cyclize. 
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Alkylation: (1S,2R) norephedrine (10.00 g, 66.13 mmol), butanal (7.2 mL,  80 mmol) and 

ethanol (100 mL) were added to a nitrogen-purged, 1L, round-bottom flask. The mixture 

was refluxed for 24 hours and cooled in an ice bath. NaBH4 (6.26 g, 165 mmol) was 

added over a period of 30 minutes. The flask was removed from the ice and ethanol was 

added (100 mL). The mixture was stirred for an additional 2.5 hours, and 1M NaOH (100 

mL, 100 mmol) was added. Ethanol was removed from the solution using rotary 

evaporation, and the product was extracted with ethyl acetate, washed with brine, and 

dried over sodium sulfate resulting in the n-butyl derivative of (1S,2R) norephedrine. The 

product was purified with flash chromatography. 

Nitrosation: The n-butyl derivative of (1S,2R) norephedrine was nitrosated by dissolving 

the alkylated norephedrine in 3M HCl (25mL, 75mmol. THF (60 mL) was added and the 

mixture was stirred while NaNO2 (5.5 g, 79 mmol) was added. The reaction proceeded 

under reflux overnight. Sodium bicarbonate (saturated solution) was added to the flask 

until a pH of 8 was reached. Rotary evaporation was used to remove the THF. The final 

product was extracted with ethyl acetate, washed with brine, and dried over Na2SO4. The 

ethyl acetate was removed by rotary evaporation resulting in the nitrosated n-butyl 

derivative of (1S,2R) norephedrine. Flash chromatography was used to purify the product 

(5.13 g, 21.7 mmol). 

Reduction: Hexanes (200mL) were added to a flame-dried, nitrogen-purged, 2L round-

bottom flask.  Lithium aluminum hydride (2.47 g, 65.1 mmol) was added to the flask 

followed by the addition of THF (135 mL). The nitrosated n-butyl derivative of (1S,2R) 

norephedrine (5.13 g, 21.7 mmol) was dissolved in THF (50 mL) and added, dropwise, to 

the flask. The reaction was refluxed for an additional two hours. The reaction was cooled 
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in an ice bath and 3M NaOH (40 mL, 100 mmol) was added. THF was removed using 

rotary evaporation. The hydrazine was extracted with ethyl acetate, washed with 

Rochelle’s solution and brine, and dried over NaSO4. The ethyl acetate was removed by 

rotary evaporation resulting in an oily, yellow product (4.83 g, 21.7 mmol). 

Cyclization: The hydrazine was dissolved in hexanes (200 mL) in a nitrogen-purged, 

flame-dried, 1L round-bottom flask. Diethyl carbonate (2.82 mL, 23.8 mmol) was added 

to the flask and the solution was brought to reflux under nitrogen. Lithium hydride (0.35 

g, 44 mmol) was added, and the solution was refluxed overnight. The resulting product 

was cooled in an ice bath, and hexanes were removed with rotary evaporation. The 

resulting product was dissolved in ethyl acetate (123 mL), washed with 1M HCl, then 

with brine, and dried over sodium sulfate. Rotary evaporation was used to remove the 

ethyl acetate, and a yellow, oily solid was obtained (4.41 g). The oil was purified using 

flash chromatography resulting in a white crystalline product (5.17 mmol, 7.82% yield). 

Crystallization Procedure 

 Single crystals were formed using vapor diffusion.  If a pure compound was being 

crystallized, a sample of approximately 0.008 g was placed in an uncapped inner vial in 

0.5 mL of solvent. If a racemate or quasiracemate was being crystallized, a mixture of the 

compounds was used with a total weight of approximately 0.008 g. Since the molecular 

weights of the oxadiazinanones are similar, this provided nearly equimolar solutions with 

concentrations of approximately 3 x 10-5 M for each component. If just one compound 

was being crystallized, this provided a 6 x 10-5 M concentration. Into an outer vial was 

placed 2.5 mL of the anti-solvent, hexanes (boiling point, 69 °C. The crystals are not 

soluble in hexanes. The outer vial was then closed, allowing the solvent and anti-solvent 
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to equilibrate by vapor diffusion. Ethyl acetate (boiling point, 77 ⁰C) was used as the 

solvent. In this system the hexanes diffuse into the inner vial. At the same time there is a 

slow diffusion of the solvent out of the inner vial into the hexanes. The oxadiazinanones 

are not as soluble in hexanes as in ethyl acetate. Because the diffusion taking place in the 

system increases the concentration of hexanes in the inner vial, crystals slowly form.31   If 

crystallization of the oxadiazinanones did not happen after 2 to 3 days, the hexanes were 

removed and replaced with fresh hexanes. Usually, crystals formed within 2 to 3 days at 

room temperature.  

X-Ray Diffraction 

X-ray structures were obtained by selecting a suitable crystal using a dissecting 

microscope. The dimensions of most crystals were approximately 0.2 mm to 0.4 mm on 

each side. The crystals were then mounted using mineral oil as an adherent on MiTeGen 

Micromounts with loops or MicroMesh aperatures. The mount was attached to the 

goniometer head and mounted on a Bruker Apex II diffractometer.  Mo-Kα radiation 

(λ=0.71073 Å) was used for the collection of the data. The sample was generally kept at 

100K during data collection. For some samples, additional information was gained by 

varying the temperature during collection as indicated in the experimental details about 

each compound. All data were collected using the software program, SAINT, and refined 

using SMART+.32 Solution and data analysis were completed using the WinGX software 

package.33 The structures were solved using direct methods employing the programs, 

SIR200434 or SuperFlip.35 The refinement was accomplished using SHELXL-2012.36 The 

non-hydrogen atoms were refined anisotropically and, in most cases, the hydrogen atoms 

were assigned using a riding-model approximation. Hydrogen atoms attached to nitrogen 
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atoms were freely refined unless indicated otherwise in the experimental details for each 

compound.
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CHAPTER III 
 

CRYSTALLOGRAPHIC RESULTS 
 

Crystallographic Details of (5R,6S)-4-Cyclopentyl-5-methyl-6-phenyl-2H-1,3,4- 
oxadiazinan-2-one, 1 

 
 Figure 3.1 shows a ChemDraw30 depiction of  (5R,6S)-4-cyclopentyl-5-methyl-6-

phenyl-2H-1,3,4-oxadiazinan-2-one (1). 

 

O

(S)
(R)

N

CH3

NH

O

 

Figure 3.1 Line diagram of 1. 
 
 
The dimensions of the crystal used for X-ray diffraction were 0.360 mm x 0.270 mm x 

0.210 mm. The sample was g kept at 100K during the diffraction experiment. Shelxl-

201236 was used for refinement.  The unit cell parameters were obtained from a least-

squares refinement of 4581 unique reflections out of the 17571 reflections collected. The 

crystal is orthorhombic and crystallizes in the P212121 space group. The cell lengths are:  

a = 8.4171(3) Å, b = 9.0618(4) Å, and c = 36.7815(13) Å. The volume of the cell is 
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2805.47 Å3 and ρ = 1.233 g/cm3.  Z’ is 2 and Z is 8.  Diffraction data were measured 

between θmin = 1.107° and θmax = 25.352°.  The limiting indices were -10 ≤ h ≤ 10, -10 ≤ k 

≤ 10, and -44 ≤ l ≤ 44. All hydrogen atoms attached to nitrogen were freely refined and 

all other hydrogens were refined using the riding-model approximation. Convergence 

was reached on the full-matrix least-squares refinement of F2. The R1-factor is 0.0432 

and wR2 is 0.1029. Figure 3.2 shows an ORTEP33 depiction of 1. The ellipsoids are at 

50% and the hydrogen atoms have been omitted for clarity. The hydrogen bonds are 

shown as dotted lines. 

 

 

Figure 3.2  Ellipsoid depiction of 1. 
 
 

The bond lengths, bond angles and torsion angles of the central oxadiazinanone 

ring as well as any carbon atoms attached to the ring are shown in Tables 3.1-3. Table 3.4 
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shows the hydrogen bond lengths. Molecule 1 refers to the molecule with the lower range 

of atom numbers. This is the molecule on the right side in Figure 3.2. 

 
Table 3.1  Bond lengths of the central oxadiazinanone rings in the asymmetric unit of 1. 
 
Atoms (Molecule 1) Distance (Å) Atoms (Molecule 2) Distance (Å) 
O1-C2 1.356(4) O51-C52 1.356(4) 
O1-C6 1.463(4) O51-C56 1.455(4) 
C2-O19 1.223(4) C52-O69 1.224(4) 
C2-N3 1.336(4) C52-N53 1.338(4) 
N3-N4 1.424(4) N53-N54 1.428(4) 
N4-C14 1.479(4) N54-C64 1.490(4) 
N4-C5 1.470(4) N54-C55 1.466(4) 
C5-C6 1.542(5) C55-C56 1.534(5) 
C5-C13 1.516(5) C55-C63 1.517(5) 
C6-C7 1.499(5) C56-C57 1.507(5) 

 
 
Table 3.2  Bond angles of the central oxadiazinanone rings in the asymmetric unit of 1. 

    Atoms (Molecule 1) Angle (°) Atoms (Molecule 2) Angle (°) 
C6-O1-C2 121.1(3) C56-O51-C52 121.6(3) 
O1-C2-N3 118.7(3) O51-C52-N53 118.6(3) 
O1-C2-O19 117.5(3) O51-C52-O69 117.9(3) 
O19-C2-N3 123.8(3) O69-C52-N53 123.5(3) 
C2-N3-N4 125.9(3) C52-N53-N54 124.7(3) 
N3-N4-C5 108.5(2) N53-N54-C55 107.0(2) 
C14-N4-C5 114.9(3) C64-N54-C55 117.0(3) 
N4-C5-C13 109.4(3) N54-C55-C63 110.0(3) 
C13-C5-C6 114.3(3) C63-C55-C56 114.1(3) 
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Table 3.3  Torsion angles of the central oxadiazinanone rings in the asymmetric unit of 1. 
 
Atoms (Molecule 1) Torsion (°) Atoms (Molecule 2) Torsion (°) 
C6-O1-C2-N3 1.5(4) C56-O51-C52-N53 -7.4(5) 
C6-O1-C2-O19 179.1(3) C56-O51-C52-O69 172.0(3) 
C2-O1-C6-C5 -26.7(4) C52-O51-C56-C55 -20.4(4) 
C2-O1-C6-C7 -151.2(3) C52-O51-C56-C57 -143.8(3) 
O1-C2-N3-N4 -4.1(5) O51-C52-N53-N54 1.1(5) 
O19-C2-N3-N4 178.4(3) O69-C52-N53-N54 -178.3(3) 
C2-N3-N4-C5 32.5(4) C52-N53-N54-C55 33.0(4) 
C2-N3-N4-C14 -92.5(4) C52-N53-N54-C64 -94.1(4) 
N3-N4-C5-C6 -55.3(3) N53-N54-C55-C56 -58.8(3) 
N3-N4-C5-C13 70.7(3) N53-N54-C55-C63 67.4(3) 
C14-N4-C5-C6 65.8(3) C64-N54-C55-C56 63.1(3) 
C14-N4-C5-C13 -168.2(3) C64-N54-C55-C63 -170.8(3) 
N4-C5-C6-O1 54.1(3) N54-C55-C56-O51 54.1(3) 
N4-C5-C6-C7 175.0(3) N54-C55-C56-C57 175.2(3) 

 
 

Table 3.4  Donor-Acceptor Hydrogen bond lengths in 1. 

Donor-Acceptor Distance, D-A (Å) Bonding Motif 

N53-O19 2.879 
Different Enantiomorph 

O69-N3 2.888 
 

 
 

Crystallographic Details of Racemic 4-Cyclopentyl-5-methyl-6-phenyl-2H-1,3,4-
oxadiazinan-2-one, 2 

Compound 2 was prepared by combining equal amounts of each enantiomer of 4-

cyclopentyl-5-methyl-6-phenyl-2H-1,3,4-oxadiazinan-2-one. The two enantiomers are 

shown in Figure 3.3. The enantiomer on the left is the ChemDraw30 depiction of (5R,6S) 

configuration and on the right is the ChemDraw30 depiction of (5S,6R) enantiomer. 

 

35 



www.manaraa.com

 
 

O
(S)

(R) N

N

O

H

CH3

O

(R)
(S)

N

N

O

H

CH3

 

Figure 3.3  Line drawings of the two enantiomers of 2. 
 
 

The temperature was 292 K. Shelxl-201236 was used for refinement.  The unit cell 

parameters were obtained from a least-squares refinement of 2460 unique reflections out 

of the 19297 reflections collected. The crystal is monoclinic and crystallizes in the P21/c 

space group. The cell lengths are: a = 9.1808(3) Å, b = 15.7560(5) Å, and c = 9.7293(3) 

Å.  The angles of the cell are: α = 90°, β = 106.132(2)°, and γ = 90°. The volume of the 

cell is 1351.95 Å3 and ρ = 1.279 g/cm3.  Z’ is 1 and Z is 4.  Diffraction data were 

measured between θmin = 2.309° and θmax = 25.300°.  The limiting indices were -11 ≤ h ≤ 

11, -18 ≤ k ≤ 18, and -11 ≤ l ≤ 11. All hydrogen atoms attached to nitrogen were freely 

refined, and all other hydrogens were refined using the riding-model approximation. 

Convergence was reached on the full-matrix least squares refinement of F2. The R1
 factor 

is 0.0381 and wR2 is 0.0926.   

Figure 3.4 shows an ORTEP33 depiction of 2. The ellipsoids are at 50% and the 

hydrogen atoms have been omitted for clarity. The hydrogen bonds are shown as dotted 

lines. 
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Figure 3.4  Ellipsoid depiction of asymmetric unit of 2.  
 

 
The bond lengths, bond angles and torsion angles of the central oxadiazinanone 

ring as well as any carbon atoms attached to the ring are shown in Tables 3.5- 3.7. Each 

oxadiazinanone structure has two hydrogen bonds in the asymmetric unit.  Hydrogen 

bond distances and angles are shown in Table 3.8.  
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Table 3.5 Bond lengths in the central oxadiazinanone ring of 2.  
 

Atoms Bond Length (Å) 

O1-C2 1.354(2) 
O1-C6 1.446(2) 
C2-N3 1.333(2) 
C2-O20 1.227(2) 
N3-N4 1.429(2) 
N4-C5 1.473(2) 
C5-C6 1.533(2) 
C7-C8 1.391(3) 

 
 
Table 3.6 Bond angles of the central oxadiazinanone ring of 2. 
 

Atoms Angle (°) 
C6-O1-C2 118.5(1) 
O1-C2-N3 118.8(1) 
O1-C2-O19 117.7(1) 
O19-C2-N3 123.4(1) 
C2-N3-N4 127.5(1) 
N3-N4-C5 108.7(1) 
C14-N4-C5 114.9(1) 
N4-C5-C13 109.9(1) 
C13-C5-C6 113.0(1) 
C5-C6-O1 108.9(1) 
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Table 3.7 Torsion angles of the central oxadiazinanone ring in the asymmetric unit of 2. 
 

Atoms  Torsion (°) 
C6-O1-C2-N3 -7.7 (2) 
C6-O1-C2-O20 174.5(1) 
C2-O1-C6-C5 40.0(2) 
C2-O1-C6-C7 165.4(1) 
O1-C2-N3-N4 -6.4(2) 
O19-C2-N3-N4 171.3(1) 
C2-N3-N4-C5 -15.3(2) 
C2-N3-N4-C14 111.3(2) 
N3-N4-C5-C6 47.0(1) 
N3-N4-C5-C13 -77.9(1) 
C14-N4-C5-C6 -76.6(1) 
C14-N4-C5-C13 158.5(1) 
N4-C5-C6-O1 -60.4(1) 
N4-C5-C6-C7 178.8(1) 
C13-C5-C6-O1 62.7(1) 
C13-C5-C6-C7 -58.1(2) 

 
 
Table 3.8 Donor-Acceptor Hydrogen bond lengths in 2. 
 

Donor-
Acceptor Distance, D-A (Å) Bonding Motif 

N3-O19 2.824 Same enantiomorph 
 
 

Crystallographic Details of Quasiracemate of (5R,6S)-4-Cyclopentyl-5-methyl-6-
phenyl-2H-1,3,4-oxadiazinan-2-one and (5S,6R)-4-Isopropyl- 

5-methyl-6-phenyl-2H-1,3,4-oxadiazinan-2-one, 3 
 

ChemDraw30 depictions of the quasienantiomers used to produce 3 are shown in 

Figure 3.5. X-ray diffraction was used to confirm the presence of quasiracemates. 
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Figure 3.5  Line drawings of (left) (5R,6S)-4-cyclopentyl-5-methyl-6-phenyl-2H- 1,3,4-
oxadiazinan-2-one and (right)  (5S,6R)-4-cyclopentyl-5-methyl -6- phenyl-2H-3,4-
oxadiazinan-2-one. 
 
 

The temperature was 292K. Shelxl-201236 was used for refinement.  The unit cell 

parameters were obtained from a least-squares refinement of 8339 unique reflections out 

of the 52929 reflections collected. The crystal is monoclinic and crystallizes in the P21 

space group. The cell lengths are: a = 10.4323(3) Å, b = 8.7068(2) Å, and 

 c = 14.6212(4) Å. The volume of the cell is 1324.64(6) Å3 and ρ = 1.240 g/cm3. The 

angles of the cell are: α = 90°, β = 94.1200(10)°, and γ = 90°.  Z’ is 2 and Z is 2.  

Diffraction data were measured between θmin = 1.396° and θmax = 32.151°. The limiting 

indices were -15 ≤ h ≤ 15, -12 ≤ k ≤ 12, and -21 ≤ l ≤ 21. All hydrogen atoms attached to 

nitrogen were freely refined and all other hydrogens were refined using the riding-model 

approximation. Convergence was reached on the full-matrix least-squares refinement on 

F2. The R1-factor is 0.0427 and wR2 is 0.1098.  An ORTEP33 depiction in Figure 3.6. In 

each figure the hydrogen atoms have been omitted for clarity and hydrogen bonds are 

shown as dotted lines. In Figure 3.9, the ellipsoids are modeled at 50% probability.  
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Figure 3.6  Ellipsoid depiction of 3. 
 
 

The bond lengths and bond angles of the central oxadiazinanone ring of 3 are 

shown in Tables 3.9 and 3.10. In Table 3.11 are found the torsions of the central 

oxadiazinanone ring, as well as the carbons attached to the central ring. Table 3.12 shows 

the hydrogen bond distances and angles. 

 

Table 3.9 Bond lengths of the central oxadiazinanone atoms of 3.  

  

Atoms-isopropyl Bond Length (Å) Atoms-cyclopentyl Bond Length (Å) 
O1-C2 1.353(2) O51-C52 1.354(2) 
O1-C6 1.457(2) O51-C56 1.458(2) 
C2-N3 1.342(2) C52-N53 1.338(2) 
C2-O17 1.228(2) C52-O69 1.233(2) 
N3-N4 1.426(2) N53-N54 1.424(2) 
N4-C5 1.474(2) N54-C55 1.476(2) 
C5-C6 1.535(2) C55-C56 1.534(2) 
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Table 3.10 Bond angles of the central oxadiazinanone rings in the asymmetric unit of 3. 
 
Atoms-isopropyl Angle (°) Atoms-cyclopentyl Angle (°) 
C6-O1-C2 120.2(1) C56-O51-C52 118.6(1) 
O1-C2-N3 119.0(1) O51-C52-N53 119.1(1) 
O1-C2-O17 117.6(1) O51-C52-O69 117.8(1) 
O17-C2-N3 123.4(2) O69-C52-N53 123.1(2) 
C2-N3-N4 125.8(1) C52-N53-N54 126.8(1) 
N3-N4-C5 107.8(1) N53-N54-C55 108.4(1) 
C14-N4-C5 115.5(1) C64-N54-C55 113.7(1) 
N4-C5-C13 110.2(1) N54-C55-C63 110.7(1) 
C13-C5-C6 113.5(1) C63-C55-C56 113.5(1) 
C5-C6-O1 109.1(1) C55-C56-O51 108.6(1) 

 
 
Table 3.11 Torsion angles of the central rings in the asymmetric unit of 3. 
 
Atoms-isopropyl Torsion (°) Atoms-cyclopentyl Torsion (°) 
C6-O1-C2-N3 1.6(2) C56-O51-C52-N53 7.2(2) 
C6-O1-C2-O17 -177.9(1) C56-O51-C52-O69 -174.6(1) 
C2-O1-C6-C5 29.3(2) C52-O51-C56-C55 -38.4(2) 
C2-O1-C6-C7 155.9(1) C52-O51-C56-C57 -164.9(1) 
O1-C2-N3-N4 -4.1(2) O51-C52-N53-N54 2.4(2) 
O17-C2-N3-N4 175.3(2) O69-C52-N53-N54 -175.7(1) 
C2-N3-N4-C5 -25.9(2) C52-N53-N54-C55 21.7(2) 
C2-N3-N4-C14 101.1(2) C52-N53-N54-C64 -103.1(2) 
N3-N4-C5-C6 55.1(2) N53-N54-C55-C56 -51.6(2) 
N3-N4-C5-C13 -70.0(2) N53-N54-C55-C63 73.7(2) 
C14-N4-C5-C6 -68.9(2) C64-N54-C55-C56 71.0(2) 
C14-N4-C5-C13 166.0(1) C64-N54-C55-C63 -163.7(1) 
N4-C5-C6-O1 -58.2(2) N54-C55-C56-O51 61.2(2)) 
N4-C5-C6-C7 -179.4(1) N54-C55-C56-C57 -176.7(1) 
C13-C5-C6-O1 64.9(2) C63-C55-C56-O51 -62.4(2) 
C13-C5-C6-C7 -56.3(2) C63-C55-C56-C57 59.6(2) 
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Table 3.12 Donor-Acceptor Hydrogen bond lengths in 3. 
 

Donor-
Acceptor Distance, D-A (Å) Bonding Motif 

O17-N53 2.868 Different 
Enantiomorph N3-O69 2.895 

 
 

Crystallographic Details of Quasiracemate of (5R,6S)-4-Cyclopentyl-5-methyl-6-
phenyl-2H-1,3,4-oxadiazinan-2-one and (5S,6R)-4-Cyclohexyl-5-methyl- 

6-phenyl-2H-1,3,4-oxadiazinan-2-one, 4 
 

 Shelxl-201236 was used for refinement. The crystal dimensions are 0.330 mm x 

0.120 mm x 0.100 mm. The temperature was 100K. The unit cell parameters were 

obtained from a least-square refinement of 7852 unique reflections out of the 53541 

reflections collected. The crystal is monoclinic and crystallizes in the P21 space group. 

The cell lengths are: a = 8.8830(3) Å, b = 16.9145(5) Å, and c = 10.0167(3) Å. The 

angles of the cell are α = 90°, β = 106.432(2)°, and γ = 90°. The volume of the cell is 

1443.55(8) Å3 and ρ = 1.230 g/cm3.  Z’ is 2 and Z is 8.  Diffraction data were measured 

between θmin = 2.120° and θmax = 29.290°. . The limiting indices were -12 ≤ h ≤ 12, -23 ≤ 

k ≤ 23, and -13 ≤ l ≤ 13. All hydrogen atoms attached to nitrogen were freely refined and 

all other hydrogen atoms were refined using the riding-model approximation. 

Convergence was reached on the full-matrix least-squares refinement on F2. The R1-

factor is 0.0455 and wR2 is 0.1126.   

ChemDraw30 depictions of the two compounds used to produce 4 are shown in 

Figure 3.7. 
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Figure 3.7  (5S,6R)-4-Cyclohexyl-5-methyl-6-phenyl-2H-1,3,4-oxadiazinan-2-one (left) 
and (5R,6S)-5-methyl-4-cyclopentyl-6-phenyl-2H-1,3,4-oxadiazinan-2-one (right).  
 
 

An ORTEP 33depiction of 4 can be viewed in Figure 3.8. In each figure the 

hydrogen atoms have been omitted for clarity and hydrogen bonds are shown as dotted 

lines. The ellipsoids are modeled at 50% probability.  

 

 
 
Figure 3.8.  Ellipsoid diagram of 4. 
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The bond lengths, bond angles and torsions of the central oxadiazinanone ring are 

shown in Tables 3.13-3.14. The torsions of the oxadiazinanone ring as well as carbons 

attached to the central ring are given in Table 3.11. The hydrogen bond distances and 

angles are displayed in Table 3.15. 

 

Table 3.13 Bond lengths in the central oxadiazinanone ring of 4. 
 

Atoms-Cyclohexyl Bond Length (Å) Atoms-Cyclopentyl Bond Length (Å) 

O1-C2 1.356(3) O51-C52 1.353(3) 
O1-C6 1.442(3) O51-C56 1.446(3) 
C2-N3 1.337(3) C52-N53 1.343(3) 
C2-O20 1.224(4) C52-O69 1.225(4) 
N3-N4 1.422(3) N53-N54 1.429(3) 
N4-C5 1.471(4) N54-C55 1.476(3) 
C5-C6 1.533(3) C55-C56 1.534(3) 
C7-C8 1.391(3) C57-C58 1.393(4) 

 
 
Table 3.14 Bond angles in the central oxadiazinanone rings of 4. 
 

Atoms-
Cyclohexyl Angle (⁰) Atoms-Cyclopentyl Angle (⁰) 

C6-O1-C2 118.6(2) C56-O51-C52 118.9(2) 
O1-C2-N3 119.1(2) O51-C52-N53 118.7(2) 

O1-C2-O20 117.6(2) O51-C52-O69 118.3(2) 
O17-C2-N3 123.3(2) O69-C52-N53 123.0(2) 
C2-N3-N4 126.8(2) C52-N53-N54 126.9(2) 
N3-N4-C5 108.0(2) N53-N54-C55 109.2(2) 
C14-N4-C5 116.1(2) C64-N54-C55 113.9(2) 
N4-C5-C13 110.0(2) N54-C55-C63 110.0(2) 
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Table 3.15 Torsion angles of the central oxadiazinanone rings of 4. 

Atoms-Cyclohexyl Torsion (⁰) Atoms-Cyclopentyl  Torsion (⁰) 

C6-O1-C2-N3 -5.1 (3) C56-O51-C52-N53 7.2(2) 
C6-O1-C2-O20 177.0(2) C56-O51-C52-O69 -174.6(1) 
C2-O1-C6-C5 37.8(3) C52-O51-C56-C55 -38.4(2) 
C2-O1-C6-C7 163.5(2) C52-O51-C56-C57 -164.7(2) 
O1-C2-N3-N4 -5.5(4) O51-C52-N53-N54 4.1(4) 
O20-C2-N3-N4 172.3(2) O69-C52-N53-N54 -173.9(2) 
C2-N3-N4-C5 -19.6(3) C52-N53-N54-C55 18.3(3) 
C2-N3-N4-C14 108.1(3) C52-N53-N54-C64 -107.3(3) 
N3-N4-C5-C6 51.2(2) N53-N54-C55-C56 -48.3(2) 
N3-N4-C5-C13 -74.0(2) N53-N54-C55-C63 76.7(2) 
C14-N4-C5-C6 -73.0(2) C64-N54-C55-C56 75.0(2) 
C14-N4-C5-C13 161.9(2) C64-N54-C55-C63 -160.0(2) 
N4-C5-C6-O1 -61.8(2) N54-C55-C56-O51 59.9(3)) 
N4-C5-C6-C7 177.0(2) N54-C55-C56-C57 -178.7(2) 
C13-C5-C6-O1 61.3(3) C63-C55-C56-O51 -63.0(3) 
C13-C5-C6-C7 -59.9(3) C63-C55-C56-C57 58.4(3) 
 

Table 3.16 Donor-Acceptor Hydrogen bond lengths in 4. 

Donor-
Acceptor Distance, D-A (Å) Bonding Motif 

N3-O69 2.823 Different 
Enantiomorph O20-N53 2.859 

 
 

Crystallographic Details of 5  
 

 In Figure 3.9 is a ChemDraw30 depiction of the product which resulted from the 

attempted synthesis of (5R,6S)-4-ethyl-5-methyl-6-phenyl-3H-1,3,4-oxadiazinan-2-one. 
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Figure 3.9  Line drawing of 5. 
 
 

The dimensions of the crystal used for X-ray diffraction were 0.248 mm x 0.201 

mm x 0.061 mm. The sample was generally kept at 100 K. Superflip37was used for 

solving the structure and Shelxl-201236 was used for refinement.  The unit cell parameters 

were obtained from a least-squares refinement of 5033 unique reflections out of the 

15264 reflections collected. The crystal is orthorhombic and crystallizes in the P212121 

space group. The cell lengths are: a = 7.0046(8) Å, b = 10.0479(11) Å, and c = 20.587(2) 

Å. The volume of the cell is 1448.94 Å3 and ρ = 1.221 g/cm3.  Z’ is 1 and Z is 4. 

Diffraction data were measured between θmin = 1.978° and θmax = 28.271°. The limiting 

indices were -9 ≤ h ≤ 9, -12 ≤ k ≤ 13, and -27 ≤ l ≤ 27. All hydrogen atoms attached to 

nitrogen and oxygen were freely refined and all other hydrogens were refined using the 

riding-model approximation. Convergence was reached on the full-matrix least-squares 

refinement of F2. The R1-factor is 0.0333 and wR2 is 0.0792. Figure 3.10 shows an 

ellipsoid drawing of 5. The ellipsoids are modeled at 50% probability.  
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Figure 3.10  Ellipsoid depiction of 5. 
 
 

The bond lengths, bond angles and torsion angles of the central oxadiazinanone 

ring as well as any carbon atoms attached to the ring are shown in Tables 3.17-19. The 

hydrogen bond lengths are given in Table 3.20.  
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Table 3.17  Bond lengths between atoms in the asymmetric unit of 5. 
 

Atoms Bond Length (Å) 

O1-C2 1.218(2) 
C2-N3 1.350(2) 
C2-O17 1.349(2) 
N3-N4 1.419(2) 
N4-C5 1.490(2) 
N4-C15 1.479(2) 
C5-C6 1.540(2) 
C5-C14 1.529(2) 
C6-C7 1.518(2) 
C6-O13 1.433(2) 
C7-C8 1.391(2) 
C7-C12 1.399(2) 
C8-C9 1.391(3) 
C9-C10 1.385(3) 
C10-C11 1.383(3) 
C11-C12 1.389(3) 
O13-H13 0.82(2) 
C15-C16 1.517(2) 
O17-C18 1.456(2) 
C18-C19 1.505(2) 
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Table 3.18  Bond angles in 5. 
 

Atoms Angle (⁰) 

O1-C2-N3 126.0(2) 
O1-C2-O17 124.9(1) 
N3-C2-O17 109.0(1) 
C2-N3-N4 118.3(1) 
N3-N4-C5 110.1(1) 
N3-N4-C15 108.0(1) 
C5-N4-C15 112.3(1) 
N4-C5-C6 108.4(1) 
N4-C5-C14 109.9(1) 
C6-C5-C14 111.4(1) 
C5-C6-C7 111.5(1) 
C5-C6-O13 110.5(1) 
C7-C6-O13 110.1(1) 
N4-C15-C16 112.1(1) 
C2-O17-C18 116.0(1) 
O17-C18-C19 110.5(1) 
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Table 3.19  Torsion angles in asymmetric unit of 5. 
 

Atoms Torsion (⁰) 

O1-C2-N3-N4 11.3(2) 
O17-C2-N3-N4 -171.2(1) 
O1-C2--O17-C18 -7.6(2) 
N3-C2-O17-C18 174.9(1) 
C2-N3-N4-C5 -115.8(2) 
C2-N3-N4-C15 121.2(2) 
N3-N4-C5-C6 56.6(2) 
N3-N4-C5-C14 178.5(1) 
C15-N4-C5-C6 177.0(1) 
C15-N4-C5-C14 -61.1(2) 
N3-N4-C15-C16 -59.0(2) 
C5-N4-C15-C16 179.4(1) 
N4-C5-C6-C7 179.1(1) 
N4-C5-C6-O13 56.3(2) 
C14-C5-C6-C7 58.0(2) 
C14-C5-C6-O13 -64.7(2) 
C2-O17-C18-C19 -80.1(2) 

 

Table 3.20  Donor-Acceptor Hydrogen bond lengths in 5. 

Donor-Acceptor Distance, D-A (Å) Bonding Motif 

N3-O13 2.941 Homoenantiomorph 

O1-O13 2.893 Intramolecular 
 

 
Crystallographic Details of 6 

 In Figure 3.11 is a ChemDraw30 depiction of the product which resulted from the 

attempted synthesis of (5R,6S)-4-n-propyl-5-methyl-6-phenyl-3H-1,3,4-oxadiazinan-2-

one. 
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Figure 3.11  Line drawing of 6. 
 
 

The dimensions of the crystal used for X-ray diffraction were 0.339 mm x 0.211 

mm x 0.04 mm. The sample was generally kept at 150(2) K. Superflip37 was used for 

solving the structure and Shelxl-201236 was used for structure refinement.  The unit cell 

parameters were obtained from a least-squares refinement of 9971 unique reflections out 

of the 37783 reflections collected. The crystal is monoclinic and crystallizes in the P21 

space group. The cell lengths are: a = 9.6957(2) Å, b = 15.5239(4) Å, and c = 11.5672(3) 

Å. Angle β is 103.4220(10)°. The volume of the cell is 1693.48 Å3 and ρ = 1.155 g/cm3.  

Z’ is 2 and Z is 4. Diffraction data were measured between  θmin = 2.23° and θmax = 

30.26°. The limiting indices were -13 ≤ h ≤ 13, -21 ≤ k ≤ 21, and -15 ≥ l ≤ 15. All 

hydrogen atoms attached to nitrogen and oxygen were freely refined and all other 

hydrogens were refined using the riding-model approximation. Convergence was reached 

on the full-matrix least-squares refinement of F2. The R1-factor is 0.0473 and wR2 is 

0.1274  Figure 3.12 shows an ellipsoid drawing of 6. The ellipsoids are modeled at 50% 

probability.  
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Figure 3.12  Ellipsoid depiction of 6. 
 
 

The bond lengths, bond angles and torsion angles of the central oxadiazinanone 

ring as well as any carbon atoms attached to the ring are shown in Tables 3.21-24. The 

hydrogen bond lengths are shown in Table 3.24.  
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Table 3.21  Bond lengths between atoms in the asymmetric unit of 6. 
 

Atoms-Molecule 1 Length (Å) Atoms-Molecule 2 Length (Å) 
O1-C2 1.217(3) O51-C52 1.215(3) 
C2-N3 1.343(3) C52-N53 1.335(3) 
C2-O19 1.337(3) C52-O69 1.342(3) 
N3-N4 1.404(3) N53-N54 1.418(3) 
N4-C5 1.484(3) N54-C55 1.491(3) 
N4-C15 1.468(3) N54-C65 1.477(3) 
C5-C6 1.549(3) C55-C56 1.540(3) 
C5-C14 1.517(3) C55-C64 1.529(4) 
C6-C7 1.518(3) C56-C57 1.510(3) 
C6-O13 1.423(3) C56-O63 1.423(2) 
C15-C16 1.530(4) C65-C66 1.521(3) 
C16-C17 1.513(4) C66-C67 1.519(4) 
C17-18 1.471(6) C67-C68 1.514(4) 
O19-C20 1.442(4) O69-C70 1.457(5) 
C20-C21 1.485(4) C70-C71 1.477(8) 

 
 
Table 3.22  Bond angles in 6. 
 

Atoms-Molecule 1 Angle (°) Atoms-Molecule 2 Angle (°) 
O1-C2-N3 126.1(2) O51-C52-N53 125.5(2) 
O1-C2-O19 124.8(2) O51-C52-O69 123.7(2) 
N3-C2-O19 109.1(2) N53-C52-O69 110.7(2) 
C2-N3-N4 120.3(2) C52-N53-N54 117.6(2) 
N3-N4-C5 112.6(2) N53-N54-C55 110.4(2) 
N3-N4-C15 109.2(2) N53-N54-C65 108.0(2) 
C5-N4-C15 113.9(2) C55-N54-C65 114.8(2) 
N4-C5-C6 114.5(2) N54-C55-C56 108.2(2) 
N4-C5-C14 109.7(2) N54-C55-C64 110.1(2) 
C6-C5-C14 112.1(2) C56-C55-C64 110.3(2) 
C5-C6-C7 111.4(2) C55-C56-C57 111.4(2) 
C5-C6-O13 108.1(2) C55-C56-O63 111.6(2) 
C7-C6-O13 112.6(2) C57-C56-O63 110.1(2) 
N4-C15-C16 110.3(2) N54-C65-C66 111.6(2) 
C15-C16-C17 113.3(2) C65-C66-C67 112.4(2) 
C16-C17-C18 114.2(4) C66-C67-C68 112.3(3) 
C2-O19-C20 115.9(2) C52-O69-C70 115.4(3) 
O19-C20-C21 107.1(3) O69-C70-C71 109.0(4) 
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Table 3.23  Torsion angles in asymmetric unit of 6 
 
Atoms-Molecule 1 Torsion (°) Atoms-Molecule 2 Torsion (°) 
O1-C2-N3-N4 1.2(4) O51-C52-N53-N54 9.2(3) 
O19-C2-N3-N4 -178.6(2) O69-C52-N53-N54 -171.6(2) 
O1-C2-O19-C20 0.3(3) O51-C52-O69-C70 1.7(4) 
N3-C2-O19-C20 -179.9(2) N53-C52-O69-C70 -177.6(3) 
C2-N3-N4-C5 -113.7(2) C52-N53-N54-C55 -115.4(2) 
C2-N3-N4-C15 118.7(2) C52-N53-N54-C65 118.4(2) 
N3-N4-C5-C6 -60.3(2) N53-N54-C55-C56 60.5(2) 
N3-N4-C5-C14 66.8(2) N53-N54-C55-C64 -178.9(2) 
C15-N4-C5-C6 64.8(2) C65-N54-C55-C56 -177.2(2) 

 -168.1(2) C65-N54-C55-C64 -56.5(2) 
N3-N4-C15-C16 -72.3(2) N53-N54-C65-C66 -68.9(2) 
C5-N4-C15-C16 160.9(2) C55-N54-C65-C66 167.5(2) 
N4-C5-C6-C7 -162.4(2) N54-C55-C56-C57 -173.7(2) 
N4-C5-C6-O13 73.4(2) N54-C55-C56-O63 62.7(2) 
C14-C5-C6-C7 71.8(2) C64-C55-C56-C57 65.8(2) 
C14-C5-C6-O13 -52.4(2) C64-C55-C56-O63 -57.7(2) 
C5-C6-C7-C8 -95.5(3) C55-C56-C57-C58 69.6(3) 
C5-C6-C7-C12 85.2(3) C55-C56-C57-C62 -111.3(2) 
O13-C6-C7-C8 26.1(3) O63-C56-C57-C58 -166.0(2) 
O13-C6-C7-C12 -153.2(2) O63-C56-C57-C62 13.1(3) 
N4-C15-C16-C17 171.8(2) N54-C65-C66-C67 175.4(2) 
C15-C16-C17-C18 64.8(4) C65-C66-C67-C68 172.3(3) 
C2-O19-C20-C21 -179.0(2) C52-O69-C70-C71 -159.2(3) 

 
 
Table 3.24  Donor-Acceptor Hydrogen bond lengths in 6. 

Donor-Acceptor Distance, D-A (Å) Bonding Motif 

O13-N3 2.883 Intramolecular 

O13-O51 2.908 Heteroenantiomorph 
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Summary of Crystallographic Details of Crystals Studied in This Research

Tables 3.25 and 3.26 summarize the crystallographic details in this research. 

 
Table 3.25 Summary data for crystallographic details of the oxadiazinanone crystals in 
this thesis. 
 

Compound 1 2 3 4 

N4 Substituent/type cyp/pure (5R,6S) 
cyp 
/racemic 

(5S,6R)cyp/ 
(5R,6S)iso 

(5S,6R(cyp)/ 
(5R,6S)iso 

Formula C15H2-N2O2 C15H20N2O2 C28H38N4O4 C31H42N4O4 
Crystal Setting orthorhombic monoclinic monoclinic Monoclinic 
Space Group P212121 P21/c P21 P21 
Crystal Size    
(mm3) 

0.360 x 0.270 x 
0.210 

0.195 x 0.138 x 
0.137 

0.449 x 0.211 x 
0.102 

0.330 x 0.120 x 
0.100 

a (Å) 8.4171(3) 9.1808(3) 10.4323(3) 8.8830(3) 
b (Å) 9.0618(4) 15.7560(5) 8.7068(2) 16.915(5) 
c (Å) 36.7815(13) 9.7293(3) 14.6212(4) 10.0167(3) 
α (°) 90 90 90 90 
β (°) 90 106.132(2) 94.1200(10) 106.432(2) 
γ (°) 90 90 90 90 
V Å3 2805.47 1351.95 1324.64 1443.55(8) 
Z; Z' 2; 8 1;4 1;2 2;8 
Density 1.233 1.279 1.240 1.230 
Temperature 80(2) K 293(2) K 293(2) K 100(2) K 
Total # reflections 17571 19297 52929 53541 
R1

-factor 0.0432 0.0381 0.0427 0.0455 
ωR2  0.1029 0.0926 0.1098 0.1126 
Unique reflections 4581 2460 8339 7852 
S 1.160 1.034 1.036 1.019 
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Table 3.26  Summary of crystallographic details of crystals studied in this research which 
were not oxadiazinanones. 
 

Compound 5 6 
Formula C14H22N2O3 C16H26N2O3 
Crystal Setting orthorhombic monoclinic 
Space Group P212121 P21 

Crystal Size (mm3) 0.248 x 0.201 x 0.061 0.339 x 0.211 x 0.04 
a (Å) 7.0046(8) 9.6957(2) 
b (Å) 10.0479(11) 15.5239(4) 
c (Å) 20.587(2) 11.5672(3) 
α (°) 90 90 
β (°) 90 103.4220(10) 
γ (°) 90 90 

V Å3 1448.94 1693.48 
Z; Z' 1;4 2;4 

density g/cm3 1.221 1.155 
Temperature 100(2) K 150(2) K 
Total # reflections 15264 37783 
R1

-factor 0.0333 0.0473 

ωR2  0.0792 0.1274 
Unique reflections 5033 9971 
S 1.038 1.02 
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CHAPTER IV 

DISCUSSION OF CRYSTAL STRUCTURES 

 In order to better understand the similarities and differences in the oxadiazinanone 

compounds studied during this research, it would be helpful to have a summary of some 

of the relevant crystallographic details.24, 26, 38 The crystal packing and hydrogen-bonding 

motifs will be compared and contrasted in an attempt to understand what causes some 

oxadiazinanones to fail to fractionally crystallize and others to succeed.  In addition, each 

of the new crystal structures found during this research will be discussed. 

Summary of the Formation of Quasiracemic Crystals and Some Key 
Crystallographic Data Pertaining to the Oxadiazinanones Studied 

 
 Tables 4.1-4 summarize the information for each of the enantiomers studied. 

Table 4.1 gives the results for each attempt made to isolate a quasiracemic crystal. If a 

quasiracemic crystal formed (failure of fractional crystallization), the term “quasi,” 

highlighted in blue, can be seen. If a combination was not attempted, the designation N/A 

is given. When enantiomers of an oxadiazinanone form a racemic crystal, it is highlighted 

in peach. In cases of fractional crystallization, the data show which quasienantiomer was 

found (based on the N4 substituent). Tables 4.2-4.3 give crystallographic details for pure 

structures, racemic structures and quasiracemic structures of oxadiazinanones, 

respectively. In Tables 4.2-4.4 the hydrogen-bonding motif refers to whether the 
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hydrogen bonds occur between structures with the same chirality (enantiomorphs) or the 

opposite chirality. The bonds between molecules with the same chirality are called homo 

enantiomorphic bonds. The bonds between molecules with different chirality are called 

hetero enantiomorphic bonds. 

 

Table 4.1 Fractional crystallization results of the combination of (5R,6S)oxadiazinanones 
and (5S,6R) oxadiazinanones.  
 

  
N4 Substituent on (5R,6S) Oxadiazinanone 

N4 
Substituent 
on (5S,6R) 

Oxadiazina-
none 

 cyclohexyl cyclo-
pentyl isopropyl n-propyl methyl 

cyclohexyl racemate2 quasi quasi2 cyclohexyl methyl 

cyclopentyl quasi racemate quasi cyclopentyl methyl 

isopropyl quasi2 N/A3 racemate1 isopropyl methyl 

n-propyl N/A3 N/A3 N/A3 racemate1 N/A3 

methyl methyl N/A3 N/A3 N/A3 racemate1 

1Racemates are assumed to form. However the cyclopentyl racemate was the only 
racemate attempted in this research. 
2 Kate Edler crystallized and reported on these crystals.26  
3N/A indicates the combination was not attempted or crystals were not obtained. 
 

Table 4.2 Crystallographic details of enantiomerically pure compounds. 

  N4 
substituent 

Space 
Group 

Crystal 
Setting Z; Z'  No. of H-Bonds; Motif 

(Asymmetric Unit) 
cyclohexyl (7) P212121 orthorhombic 16; 4 4; homo-enantiomorph 
cyclopentyl (1)   P212121 orthorhombic 8; 2 2; homo-enantiomorph 
isopropyl (9) P212121 orthorhombic 8; 2 2; homo-enantiomorph 
n-propyl (13) P21 monoclinic 4; 2 4; homo-enantiomorph 
methyl (12) P21 monoclinic 2; 1 2; homo-enantiomorph 
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Table 4.3 Crystallographic details of racemic compounds. 

N4 substituent Space 
Group 

Crystal 
Setting Z; Z’ No. of H-Bonds; Motif 

(Asymmetric Unit) 
isopropyl (11) C2/c monoclinic 8; 1 2; hetero-enantiomorph 
cyclopentyl (2) P21/c monoclinic 4; 1 2; hetero-enantiomorph 
cyclohexyl(10) P-1 triclinic 4; 2 4; hetero-enantiomorph 
 
 
Table 4.4 Crystallographic details of quasiracemic compounds. 

N4 substituents Space 
Group 

Crystal 
Setting Z; Z’ No. of H-Bonds; Motif 

(Asymmetric Unit) 
isopropyl/cyclopentyl (3)  P21 monoclinic 4; 2 4; hetero-enantiomorph 

isopropyl/cyclohexyl (8) P21 monoclinic 4; 2 4; hetero-enantiomorph 

cyclohexyl/cyclopentyl (4) P21 monoclinic 4; 2 4; hetero-enantiomorph 
 
 
Most of the oxadiazinanones studied have Z’ > 1. Compound 7 has Z’ of 4. Table 

4.5 shows that of the more than 600,000 structures in the Cambridge Structural Database 

a Z’ ≤ 1 occurs in about 88% of the crystals. A Z’ of 2 is much less common, and Z’  of  4 

is encountered less than 0.4 % of the time.39  These unusually high Z’ values may provide 

insight into why some of the compounds form quasiracemic crystals and others do not.  
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Table 4.5 The occurrence frequency of structures between Z’ ranges in the Cambridge 
Structural Database in 2013.39 
 

 
 
 
 
 
 
 
 
 

 

In each quasiracemic crystal the Z’ is less than or equal to the Z’ of the component 

quasienantiomers. This is especially notable in the cyclopentyl/cyclohexyl quasiracemate. 

The cyclopentyl quasienantiomer, 1, has a Z’ of 2, and the cyclohexyl quasienantiomer, 7, 

has a Z’ of 4. After mixing the quasienantiomers together and crystallizing them, the 

resulting quasiracemate, 3, has a Z’ of 2. Since this Z’ of 2 includes the two 

quasienantiomers, it would be comparable to a Z’ of 1 in a racemate crystal. When the 

methyl quasienantiomer is combined with any other quasienantiomer, the methyl always 

fractionally crystallizes.  

Kitaigorodskii’s close-packing principle states that reduction of volume and 

increase in density are major factors in determining the ease with which molecules pack 

in the solid state.40 Brock and Dunitz noted that structures with large Z’ values are 

associated with packing conflicts. Packing conflicts make it difficult to crystallize some 

compounds.34 Although Z’ for 7 is 4, when it co-crystallizes with 1 or 9 the resulting 

quasiracemic crystal has Z’ of 2 which is comparable to a Z’ of 1 in a racemate. This may 

indicate reduction in packing conflict with the quasiracemate crystal as compared to that 

Range of Z’ % Structures 

0 ≤ Z’ ≤ 1 88.2% 

1 < Z’ ≤ 2 10.5% 

2 < Z’ ≤ 3 0.6% 
3 < Z’ ≤ 4 0.4% 

4 < Z’ 0.1% 

61 



www.manaraa.com

 
 

of either of the pure oxadiazinanone enantiomers making up the racemates.  

According to Braun et al., Z’ of 1 is commonly found in racemic crystals, and he 

indicated that inversion symmetry is a probable reason.41 In a study by Kelley et al. it was 

found that inversion symmetry is very favorable for crystal packing. Inversion symmetry 

generally allows the molecules in the crystal to pack in less space, a factor which favors 

crystallization according to the close-packing principle.1 Brook et al. observed that the 

majority of crystallizations from racemic solutions lead to racemic crystals.42 The most 

common space groups, P1, P21/c, C2/c and Pbca, are racemic and these four space 

groups account for approximately two-thirds of all organic crystals.42 Even though 

quasiracemates do not form true inversion centers, there are pseudo-inversion centers. 

The presence of these pseudo-inversion centers may make the quasiracemic crystal more 

stable than either of the quasienantiomeric crystals. This would explain why 3, 4, and 8 

form quasiracemic crystals.  It seems the value of Z’ of the constituents has some impact 

on Z’ of the quasiracemic crystal. The pseudo-inversion possible with quasiracemic 

crystals also seems to reduce packing conflicts. If packing conflicts can be alleviated by 

the formation of a quasiracemic crystal, the quasiracemic crystal is more likely to 

crystallize than either of the oxadiazinanone quasienantiomers.  

Another observation can be made from the data in Table 4.1. When the isopropyl 

derivative and the n-propyl derivative were mixed, the isopropyl derivative crystallized. 

When the cyclohexyl and methyl derivatives were mixed, the methyl derivative 

crystallized. Finally, when the cyclohexyl and the n-propyl derivatives were mixed, the 

cyclohexyl was crystallized. The n-propyl group is more flexible than the isopropyl group 

which may help to make it more soluble in the ethyl acetate used for the crystallization 
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process. In Figure 4.1, the connecting motif from N4 to the carbon on the N4 substituent 

is highlighted in blue. The cyclohexyl and cyclopentyl substituents have a connection 

with N4 similar to that of isopropyl, and they crystallize more readily than the 

oxadiazinanone with the n-propyl substituent which indicates that they may be more 

stable and able to crystallize more easily. In combinations which included a 

quasienantiomer with methyl as the N4 substituent, the quasienantiomer with an N4 of 

methyl always crystallized first. Methyl is the smallest N4 substituent and will have the 

least flexibility possible.  

 

N

CH3

O NH

O

N

CH3

O NH

O

N

CH3

O NH

O

 
Figure 4.1 Line drawings of 9, 10, and 12. 

 
 
The principle that says crystallization favors the reduction of packing conflicts 

can be observed in the results of the crystallization studies shown in Tables 4.1-4.4. 

There seems to be indications that flexibility in a compound’s bonds impacts 

crystallization. When 13, the n-propyl derivative, was mixed with a quasienantiomer, 13 

appeared to remain in solution. Each time 12, the methyl derivative was mixed with a 

quasienantiomer, 12 was the crystal which was isolated. From this it seems that when 

methyl is the N4 substituent, it can be crystallized with few packing conflicts. On the 

other hand, when n-propyl is the N4 substituent it is less likely to crystallize. This could 
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be due to the flexibility in its structure which can create packing conflicts.  

It is always important to note that only one crystal from each product was 

analyzed by X-ray diffraction. If one determines the existence of a quasiracemic crystal, 

the certainty is that the combination of quasienantiomers can form a quasiracemate. In the 

case of no quasiracemic crystal being found, one can only say for certain that a 

quasiracemate was not found. 

Hydrogen bonding remains a significant driving force in the determination of the 

shapes of crystal.40 The most acidic hydrogen atoms will bond with the most readily 

available hydrogen acceptors. In the case of the oxadiazinanones, the hydrogen bonding 

always has the form, R2
2(8).14 This means the hydrogen bonds form an eight-member ring 

with two hydrogen bond donors and two acceptors. The hydrogen bond occurs between 

the carbonyl groups and the amine hydrogens on the molecules in the crystal. According 

to the literature,38 the bond lengths between the C3-N3 carbons in oxadiazinanones which 

are unsubstituted at the N3 position (the case for all the oxadiazinanones studied in this 

research) is shorter than those which are substituted.  The C3-N3 bond lengths in 

oxadiazinanones unsubstituted at N3 are in the range 1.389-1.418Å. Two structures 

substituted at N3 have C3-N3 bond lengths of 1.337(2) Å and 1.342(2) Å.39 This 

indicates the presence of greater double bond character for this bond.  This double bond 

character could play a role in the strong preference these compounds have for hydrogen-

bonding. It is worth noting that hydrogen bonding can occur between the same 

enantiomorphs, referred to as a homo-enantiomorph motif, or different ones, a hetero-

enantiomorph motif. Tables 4.2-4.4 indicate the bonding motif for each crystal studied. 

Another driving force for a particular type of crystal packing is the minimization 
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of electrostatic energy. Although this is very important in ionic crystals, it also is true in 

molecular crystals.40 The localized charges on the atoms are small, but remain important 

in the packing of the crystals. Minimizing these forces happens when positive and 

negative charges are optimized. As described by Brock, this is much like having bumps 

against hollows, donors against acceptors, positive ends of dipoles against negative 

ends.40 This helps to increase density and minimize volume, implying reduced packing 

conflicts. Hydrogen-bonding which is prevalent in oxadiazinanone crystals can help to 

minimize electrostatic energy. 

            Springuel et al. summarized the formation of co-crystals by concluding that the 

formation of co-crystals is a summation of molecular geometry, steric hindrance and 

hydrogen-bonding.43 This appears to be the case in the structures of this thesis. 

Analysis of (5R,6S)-4-Cyclopentyl-5-methyl-6-phenyl-2H-1,3,4-oxadiazinan-2-one, 1 

Compound 1 packs in space group P212121.  This non-centrosymmetric group has 

three screw axes orthogonal to each other with no other symmetry elements. Because 

there is no other symmetry, the two molecules are not crystallographically identical. This 

could be due to conformational differences in the two molecules or flexibility in the 

hydrogen-bonding.44 There are two molecules in the asymmetric unit. The packing 

diagram is shown in Figure 4.2.  
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Figure 4.2 Packing diagram of 1. 
 
 
 The data from an X-ray diffractometer must be converted to a set of coordinates 

which describe the crystal in three-dimensional space. Once this data has been obtained, 

Mercury a software package developed by the Cambridge Crystallographic Data Centre, 

can create images of the crystals. This data can be used  to analyze crystal structures 

including bond distances, torsion angles, hydrogen bonding and symmetry. One reason 

for having more than one molecule in the asymmetric unit of a crystal is that the 

molecules have different conformations.41 To determine whether this is the case for 1, an 

overlay was done using Mercury.45 In Figure 4.3 is a wireframe depiction of 1. The three 

atoms in the central oxadiazinanone ring marked in yellow were chosen as the atoms over 

which a least squares fit was calculated.  
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Figure 4.3   Overlay of the two molecules in the asymmetric unit of 1. 

 

 When an overlay is calculated in Mercury,45 the closest fit will be found in the 

atoms chosen for the least squares calculation, and the farther from these atoms one goes, 

the greater the differences will appear. Figure 4.3 shows that these two molecules differ 

the most in their structure where the cyclopentyl group is located. This could be the 

source of the unexpected asymmetry.  Even when the overlay is calculated using atoms in 

the cyclopentyl substituent, there is still a difference in the conformation of the 

cyclopentyl group. 

  When two molecules are present in the asymmetric unit of pure enantiomers, 

hydrogen bonding can allow some flexing of the bonds. This creates some slight 

differences in the two molecules. This flexing creates a situation which distorts the 

inversion centers.1 
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Analysis of the Racemate of 4-Cyclopentyl-5-methyl-6-phenyl-2H-1,3,4-oxadiazinan-
2-one, 2 

 
 Compound 2 crystallizes in the non-chiral, centrosymmetric space group P21/c, 

the most common space group. This space group comprises over one-third of the crystals 

in the Cambridge Structural Database.46 Because the crystal is a racemate it does not have 

optical activity.  Although two different enantiomers are present in the structure, there is 

only one molecule in the asymmetric unit (Z’ = 1) because the enantiomers, by definition, 

are mirror images of each other. That means that if there is one enantiomer present, the 

other can be obtained by a symmetry operation (inversion). The unit cell has two glide 

planes, two 2-fold screw axes and an inversion center.  The packing diagram in Figure 

4.4 shows the 4 structures in the unit cell.  

 

 
 
Figure 4.4  Packing diagram of 2.  
 
 

In the racemate, 2, hydrogen-bonding is observed between different 

enantiomorphs in the crystal. This differs from the bonding that occurs in 11 (see Table 
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4.3) where the hydrogen bonding occurs between the same enantiomorphs even though it 

is also a racemic crystal. 

Analysis of the Quasiracemate of (5R,6S)-5-Methyl-4-cyclopentyl-6-phenyl-2H-1,3,4-
oxadiazinan-2-one and (5S,6R)-4-Isopropyl-5-methyl-6-phenyl-2H-1,3,4-

oxadiazinan-2-one, 3 
 
 Compound 3 packs in the non-centrosymmetric space group P21 and has one 

symmetry element, a screw axis. The hydrogen-bonding motif is hetero-enantiomorphic. 

There are 2 molecules in the asymmetric unit (see Figures 3.9 and 10). The packing 

diagram can be seen in Figure 4.5. 

 

 

 

Figure 4.5  Packing diagram of 3.  
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 This quasiracemate compares to 8 (see Table 4.4) in that they both crystallize in 

the space group P21. Both have two molecules in the asymmetric unit—one 

oxadiazinanone with an N4 cyclohexyl substituent and the other with an N4 substituent of 

isopropyl or cyclopentyl. This compound could possibly be modeled as a 

centrosymmetric crystal with disorder in the area of the isopropyl and cyclopentyl 

substituents with half occupancy of each of the substituents. Figure 4.6 shows an overlay 

of the quasienantiomers. The hydrogen atoms have been omitted for clarity. 

 

Figure 4.6  Overlay of 2 and 3. 
 
 
 In this overlay the nitrogen atoms and oxygen atoms used in the hydrogen-

bonding have been used to determine the least squares alignment of the structures. It is 

important to note that as one looks further from the center where the structures are 
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aligned, the differences become more exaggerated. In this overlay it seems that the 

isopropyl substituent and the cyclopentyl constituent are closely aligned and that this 

could be solved in a centrosymmetric space group. 

In Figure 4.7 one can compare the hydrogen-bonded dimers of 2 and 3. The 

similarities are striking—again making a case for the possibility of solving the structure 

in a centrosymmetric space group. The hydrogen atoms have been omitted for clarity. 

 

 

 

Figure 4.7  The hydrogen-bonded dimers of 2 (top) and 3 (bottom).  
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 Compound 2 has an inversion center located within the hydrogen bonds and, of 

course 3, does not. However, Compound 3 could have a pseudo-inversion center located 

within the hydrogen bonds.  Figure 4.8 shows 2 and 3 from an angle which allows one to 

compare the hydrogen bonds. Again, hydrogen atoms have been omitted for clarity. 

 

 

Figure 4.8  The upper structure is a wireframe depiction of  the quasiracemate, 3, and the 
lower structure is that of the racemate, 1. Both structures are shown from a perspective 
parallel to the hydrogen-bonds.   
 
 
 In Figure 4.8 one can see that the hydrogen bonds in 1 appear parallel to each 

other and the molecule does not show much flexion in the bonds. In 3, the hydrogen 

bonds are skewed in slightly different directions, and there is some flexing of the 

different enantiomers. This is further evidenced in the difference in the torsion angles 

between the four atoms which are hydrogen bonded. In 1 the torsion angle is 0.00(5)° and 
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in 3 the torsion angle is 3.86(6)°. The distances between the nitrogen and oxygen atoms 

in the hydrogen bonds in 3 are 2.868(2) Å and 2.895(2) Å. The distance between the 

nitrogen and oxygen atoms in the hydrogen bonds in 2 is 2.824(2) Å. It can be seen, 

therefore, that there is more discrepancy between the structures than is immediately 

evident.  

Analysis of the Quasiracemate of (5R,6S)-5-Methyl-4-cyclopentyl-6-phenyl-2H-1,3,4-
oxadiazinan-2-one and (5S,6R)-4-Cylohexyl-5-methyl-6-phenyl-2H-1,3,4-

oxadiazinan-2-one, 4 
 

 Compound 4 crystallizes in the monoclinic, chiral P21 space group. There are two 

molecules in the asymmetric unit (see Figure 3.11). The only symmetry element present 

is a two-fold screw axis.  As in 2, hydrogen bonding in 4 occurs between the two 

quasienantiomers in a hetero-enantiomorph motif. In Figure 4.9 one can see the packing 

of 4 in the unit cell. Hydrogen atoms have been omitted for clarity. 

 
 

Figure 4.9  Packing diagram of the unit cell of 4.  
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In Figure 4.10 one can see the overlay of 2 (racemate) and 4 (quasiracemate). In 

this overlay the nitrogen atoms and oxygen atoms at each of the double bonds have been 

used in the least squares analysis. These atoms near the center of the structure are forced 

to be aligned as closely as possible which cause the differences to be exaggerated as one 

analyzes the differences further from the center. With that concept in mind, one can see 

the close alignment of the cyclopentyl group in the racemate and the cyclohexyl group in 

the quasiracemate.   

 

 
 

Figure 4.10  Overlay of 2 and 4.  
 
 
In Figure 4.11 one can see that the hydrogen bonds in 2 and 4 are very similar and 4 

seems to have little flexion. In 1 the torsion angle is 0.00(5)° and in 3 the torsion angle is 

0.52(9)°.  The distances between the nitrogen and oxygen atoms in 4 are 2.859(3) Å and 
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2.823(3) Å. The distance between the nitrogen and oxygen atoms in each of the hydrogen 

bonds in the racemate 2 is 8.824(2) Å. 

 

 
 

 
Figure 4.11  Hydrogen-bond comparison of 2 (top) and 4 (bottom).  
 

  The comparison of the hydrogen bond angles and torsion angles between 2 and 4 

are closer than those between 2 and 3 as can be seen in Table 4.6. 

 
Table 4.6  Torsion angles and bond distances in the hydrogen bond motifs of 2, 3 and 4.  
 

 

Hydrogen Bond Distances 
(Å) 

Donor to Acceptor 
Atoms Torsion Angles 

(°) 

Compound 2 2.824(2) Å N3-O19-N3-19 0.00(5) 

Compound 3 2.868(2) Å;  2.895(2) Å O69-N3-O17-N53 3.86(6) 

Compound 4 2.859(3) Å; 2.823(3) Å O69-N5-O20-N53 0.52(9) 
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 The similarity in the structure for racemic cyp and cyp/cyh leads one to wonder if 

the quasiracemate could be solved in a centrosymmetric space group modeling a disorder 

with the cyclohexyl quasiracemate and the cyclopentyl racemate present in equal 

amounts. This modelling was attempted and Figure 4.12 shows the resulting asymmetric 

unit. 

 

Figure 4.12  Asymmetric unit of 4 solved in P21/c space group. 
 
 

In this structure the lengths of the hydrogen bonds are both 2.77(1) Å. The torsion 

angles are 0.0°. These values are constrained because the second molecule is generated 

by an inversion.  The extra atoms that can be seen around the N4 substituent represent the 

disorder at the N4 substituent.  When solved in the centrosymmetric space group P21/c, Z 

= 4 and Z’ = 1. The R1-factor is 0.1635 and wR2 is 0.3397. The R-factors are higher than 

what should be accepted in a structure, but it is conceivable that they are low enough that 
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this could be used as a proof of concept. The definition of a quasiracemate could be 

changed to reflect the ability of the structure to be solved in a centrosymmetric space 

group with some higher level of R-values, weighted or un-weighted. This definition does 

not mean the structure should be solved and published as a centrosymmetric crystal, but 

that the structure is capable of being solved in a centrosymmetric space group. This also 

indicates that the Z‘ = 2 of 4 is a bit misleading, because it is much like 2 which has a Z’ 

of 1. 

Analysis of 5 

Compound 5 (Figure 3.13) was the result of an attempt to synthesize an 

oxadiazinanone substituted at the N4 position with an ethyl group. The cyclization 

reaction, after purification with flash chromatography, appeared to produce the desired 

product based on the 1H NMR spectrum. 

After solving the structure using X-ray diffraction, it was found that the N4 

substituent was the ethyl group but the ring had not closed. It is possible that the desired 

product was produced in addition to the product which was identified by X-ray 

diffraction, but the oxadiazinanone was more soluble than the non-cyclized product and 

did not crystallize. Figure 4.13 gives the reaction for the synthesis of the non-cyclized 

product, (1S,2R) 2-[N-ethyl-N’-o-ethyl hydrazinoate]-1-phenyl-propan-2-ol, 5, from the 

hydrazine of the ethyl derivative of  (1S,2R) norephedrine.  
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Figure 4.13  An attempt to cyclize the hydrazine of the ethyl derivative of (1S,2R) 
norephedrine resulted in 5. 

 
 

 Compound 5 crystallizes in the orthorhombic space group, P212121, and has one 

molecule in the asymmetric unit (Z’ = 1). The compound has three 2-fold screw axes as 

the only elements of symmetry. The asymmetric unit has two hydrogen bonds. Figure 

3.14 shows that one of the hydrogen bonds is homoenantiomophic and one is an 

intramolecular bond. It is interesting to note that the hydroxyl group at O13 is a proton 

donor to the intramolecular carbonyl group and a proton acceptor from the secondary 

amine at N3. In Figure 4.14, it can be seen that there are four molecules in the unit cell, 

therefore Z = 4.  

 

Figure 4.14  Packing diagram of the unit cell of 5.  
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Analysis of 6 

 Compound 6 (Figure 3.14) was the result of an attempt to synthesize an 

oxadiazinanone substituted at the N4 position with an n-butyl group. The cyclization 

reaction, after purification with flash chromatography, appeared to produce the desired 

product based on the 1H NMR spectrum.  

After solving the structure using X-ray diffraction, it was found that the N4 

substituent was the n-butyl group but the ring had not closed. It could be that the desired 

product was produced in addition to the product which was identified by X-ray 

diffraction, but the oxadiazinanone was more soluble than the non-cyclized product and 

did not crystallize. Figure 4.15 gives the reaction for the synthesis of the non-cyclized 

product, (1S,2R) 2-[N-n-butyl-N’-o-n-butyl hydrazinoate]-1-phenyl-propan-2-ol, 6, from 

the hydrazine of the n-butyl derivative of (1S,2R) norephedrine. 

. 
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Figure 4.15  An attempt to cyclize the hydrazine of the n-butyl derivative of (1S,2R) 
norephedrine resulted in synthesis of 6. 
 
 
 The compound crystallizes in the monoclinic space group, P21, and has two 

molecules in the asymmetric unit (Z’ = 2). The only symmetry element is a two-fold 

screw axis. This compound has only two hydrogen bonds. One of the bonds is 

intramolecular. The other is between a carbonyl group and an alcohol group on the other 
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molecule in the asymmetric unit. Using symbols and terminology of Etter et al.,14 this 

would have two motifs, S(6) and D, indicating the intramolecular bond (S) and the bond 

between the two molecules of the asymmetric unit (D).   

 Figure 4.16 shows the packing diagram of the unit cell. The two molecules, 

although the same compound, have different conformations. This is readily apparent 

when the two molecules are compared in Tables 3.22 and 3.23. The n-butyl group has 

enough flexion in the bonds and angles that perhaps the conformation changes enable the 

molecules to pack more densely.  

  

Figure 4.16  Packing diagram of the unit cell of 6.  
 
 
 Polymorphic transformation was displayed in 6. When the temperature of data 

collection of the n-butyl derivative was 150 K, the crystal was monoclinic and when the 

temperature was lowered to 100 K, the crystal morphed to a triclinic crystal. 
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Crystallographic details could not be determined as the crystal shattered as it was cooled 

down. Polymorphic transformation can occur as the sizes of the atoms making up the 

compound increase or decrease based on the temperature. As the vibrations in the atom 

increase with increasing temperature, the increasing size of the molecule may make a less 

compact crystal more stable.47 The incidence of polymorphism is common if this 

statement of Walter C. McCrone is true:  “Every compound has different polymorphic 

forms, and that, in general, the number of forms known for a given compound is 

proportional to the time and money spent in research on that compound.”48,49   

 In each of 5 and 6, the diethyl carbonate attached as expected to the amine group, 

but failed to attach at the hydroxyl group.  The hydroxyl group has a stronger bond than 

the ammonia group, so the ammonia group left first and allowed the attachment of the 

diethyl carbonate. Changing the experimental procedure could produce the desired 

oxadiazinanone in each case.  If the hexanes used as the solvent are not completely dry, 

the LiH will react with water more readily than with the hydrazine. Therefore, every 

effort must be made to ensure that the hexanes are dry. If the fourth step of the synthesis 

is repeated with the uncyclized product, the desired oxadiazinanone should be obtained. 

The LiH:hydrazine mole ratio was 1:2. Perhaps a greater concentration of LiH would also 

be effective in producing the oxadiazinanone. 

General Conclusions and Future Work 

 At this point in the study of quasiracemates, the need is to acquire a database of 

structures. From this database it is hoped that the reasons for the formation of 

quasiracemic crystals with some compounds and not others can be elucidated. The 

knowledge gained from the study has the potential to direct the engineering of crystals to 
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meet specific needs. To that end, this research can be helpful. The more data collected, 

the more knowledge may be gained about the reasons for quasiracemate co-

crystallization. 

 The research goals for this project were met. The inventory of oxadiazinanones 

was increased. A new oxadiazinanone, (5R,6S)-4-cyclopentyl-5-methyl-6-phenyl-2H-

1,3,4-oxadiazinan-2-one, was synthesized.  Attempts to combine oxadiazinanone 

enantiomers to form quasiracemates were made and two new quasiracemates were 

formed. Hydrogen bonding and the number of structures in the asymmetric unit were 

investigated as they related to the formation of the quasiracemates. The structure 

similarities of those quasienantiomers involved in quasiracemate formation were 

compared and an isopropyl type of connection to N4 seemed to be a common bond.  

  How similar must the quasienantiomers be to co-crystallize? Further research 

with oxadiazinanones with different N4 substituents would be useful in determining this. 

Will oxadiazinanones form quasiracemates with oxadiazinathiones?  Will the 

crystallization of oxadiazinathiones quasiracemates mirror that of oxadiazinanone 

compounds? The synthesis of oxadiazinanthiones with varying N4substiuents and the 

subsequent combination of them with other oxadiazinanthiones or oxadiazinanones will 

provide new data. This data will perhaps provide new answers and probably raise some 

more questions.  

  

 

82 



www.manaraa.com

 
 

REFERENCES 

1. Kelley, S.; Fabian, L.; Brock, C. Failures of Fractional Crystallization: Ordered 
Co-crystals of Isomers and Near Isomers. Acta Crystallogr., Sect. B: Struct. Sci. 2011, 
B67, 79-93. 
 
2. Breen, M.; Tameze, S.; Dougherty, W.; Kassel, W.; Wheeler, K. Structural 
Studies of Enantiomers, Racemates, and Quasiracemates. 2-(3-Bromophenoxy)propionic 
Acid and 2-(3-Methoxyphenoxy)propionic Acid. Cryst. Growth Des. 2008, 8 (10), 3863-
3870. 

3. Moss, G. P. Basic Terminology of Stereochemistry. Pure Appl. Chem. 1996, 68 
(12), 2193-2222. 

4. Husbye, S., An X-Ray Crystallographic Study of Some Racemates and Quasi-
racemates.  Acta Chem. Scand. 1961, 15, 1215-1222. 

5. Eliel, E.; Wilen, S. Stereochemistry of Organic Compounds; Wiley: New York, 
1994. 

6. Flack, H., Louis Pasteur's Discovery of Molecular Chirality and Spontaneous 
Resolution in 1848, Together with a Complete Review of his Crystallographic and 
Chemical Work. Acta Crystallogr., Sect. A: Found. Crystallogr. 2009, 65 (5), 371-389. 

7. Zhang, Q.; Curran, D. Quansienantiomers and Quasiracemates: New Tools for 
Identrification, Analysis, Separation and Synthesis of Enantiomers. Chem. - Eur. J. 2005, 
11, 4866-4880. 

8. Denmark, S. E. Topics in Stereochemistry. John Wiley and Sons: New York, 
1999; Vol. 22, p 336. 

9. Mislow, K. Introduction to Stereochemistry. W.A.Benjamin: New York, 1965. 

10. Centnerszwer, M. About Melting Points of Mixtures of Optical Antipodes. 
[machine translation] Z. Phys. Chem. 1899, 29, 715-725. 

11. Fomulu, S.; Mukta, S.; Davis, R.; Wheeler, K. Structural Studies of Enantiomers, 
Racemates, and Quasiracemates. 2-(2,4,5-Trichloroanilino)propanoic Acid and 2-(2,4,5-
Trichlorophenoxy)propanoic Acid. Cryst. Growth Des. 2002, 2 (6), 637-644.

83 



www.manaraa.com

 
 

12. Fredga, A. Steric Correlations by the Quasi-racemate Method. Tetrahedron 1960, 
8, 126-144. 

13. Karle, I.; Karle, J. The Crystal Structure of the Quasi-Racemate from (+)-m-
Methoxyphenoxypropionic Acid and (-)-m-Bromophenoxypropionic Acid. J. Am. Chem. 
Soc. 1966, 88 (1), 24-27. 

14. Etter, M.; MacDonald, J.; Bernstein, J. Graph-Set Analysis of Hydrogen-Bond 
Patterns in Organic Crystals. Acta Crystallogr., Sect. B: Struct. Sci. 1990, B46, 256-262. 

15. Sands, D. Introduction to Crystallography. Dover Publications, Inc.: Mineola, 
New York, 1975, p 165. 

16. Hitchcock, S.; Nora, G.; Casper, D.; Squire, M.; Maroules, C.; Ferrence, G.;; 
Szczepura, L.; Standard, J. X-Ray Crystallographic and 13C Nuclear Magnetic Resonance 
Studies of 3,4,5,6-Tetrahydro-2-H-1,3,4-oxadiazin-2-ones Derived from Ephedrine and 
Pseudoephedrine. Tetrahedron 2001, 57, 9789-9798. 

17. Casper, D.; Blackburn J.; Maroules, C.; Brady, T.; Ferrence, G.;Standard, J.; 
Hitchcock, S. Conformational Studies of N3-substituted [1,3,4]-Oxadiazinan-2-ones. J. 
Org. Chem. 2002, 67, 8871-8876. 

18. Burgeson, J.; Renner, M.; Hardt, I.; Ferrence, G.; Standard, J.; Hitchcock, S. 
Towards the Development of a Structurally Novel Class of Chiral Auxiliaries. 
Conformational Properties of the Aldol Adducts of Oxadiazinones: Observation of 
Unusual Shielding Effects. J. Org. Chem. 2004, 69, 727-734. 

19a. Knott, S.; Hitchcock, S.;  Ferrence, G.; (5R,6S)-4,5-Dimethyl-3-methylacryloyl-6-
phenyl-1,3,4-oxadiazinan-2-one. Acta Crystallogr., Sect. E: Struct. Rep. Online 2008, 
E64, 1101. 

19b.     Addison, L.; Dore, D.; Hitchcock, S. (4R,5S)-5-Benzyl-4-isopropyl-1,3,4-
oxadiazinan-2-one. Acta Crystallogr., Sect. E: Struct. Rep. Online 2008, E64, 1040-1041. 

20. Tailor, D.; Edler, K.; Casper, D.; Hitchcock, S.; Ferrence, G., (5S,6R)-4-
Isopropyl-5-methyl-6-phenyl-3-propanoyl-2H-1,3,4-oxadiazinan-2-one. Acta 
Crystallogr., Sect. E: Struct. Rep. Online 2009, E, 1685-1686. 

21. Kocher, J.; Edler, K.; Bohling, B.; Nora, G.; Stafford, C.; Hitchcock, S.;  
Ferrence, G.; (5S,6R)-5-Methyl-6-phenyl-4-propyl-1,3,4-oxadiazinane-2-thione. Acta 
Crystallogr., Sect. E: Struct. Rep. Online 2009, E65, 1421-1422. 

22. IUPAC, Compendium of Chemical Terminology, 2nd Ed. (the "Gold Book". 
McNaught, A.; Wilkinson, A., Eds. Blackwell Scientific Publications: Oxford, 1997. 

23. Powell, G.; Revision of the Extended Hantzsch-Widman System of Nomenclature 
for Heteromonocycles. Pure Appl. Chem. 1983, 55, 409-416. 

84 



www.manaraa.com

 
 

24. Casper, D.; Nora, G.; Blackburn, J.; Bentley, J.; Taylor, D.; Hitchcock, S. 
Synthesis of N4-Substituted [1,3,4]Oxadiazinan-2-ones Derived from Norephedrine. J. 
Heterocycl. Chem. 2002, 39, 823-828. 

25. Casper, D.; Burgeson, J.; Esken, J.; Ferrence, G.; Hitchcock, S. Toward the 
Development of a Structurally Novel Class of Chiral Auxiliaries: Diastereoselective 
Aldol Reactions of a (1R,2S)-Ephedrine Based 3,4,5,6-Tetrahydro-2H-1,3,4-oxadiazin-2-
one. Org. Lett. 2002, 4, 3739-3742. 

26. Edler, Kate. M.S. Thesis, Illinois State University, Normal, IL, 2011. 

27. Hitchcock, S.; Davis, R.; Richmond, D.; Dore, D.; Kuschel, S.; Vaughn, J. 
Synthesis, Asymmetric Aldol Reactions, and X-Ray Crystallography of some 
Oxadiazinanone Derivatives. J. Heterocycl. Chem. 2008, 45, 1265-1274. 

28. Bentley, Jeremy. M.S. Thesis, Illinois State University, Normal, IL, 2002. 

29. Hitchcock, S.; Nora, G.; Hedberg, C.; Casper, D.; Buchanan, L.; Squire, M., X-
Ray Crystallographic and Proton Nuclear Magnetic Resonance Studies of beta-Hydroxy-
N-nitrosamines derived from alpha-Amino Acids and Ephedrine. Tetrahedron 2000, 56, 
8799-8807. 

30. ChemDraw Corporation ChemDraw Std, version 13.0.2.3021. Cambridge, MA, 
2013. 

31. Spingler, B.; Schnidrig, S.; Todorova, T.; Wild, F. Some Thoughts About the 
Single Crystal Growth of Small Molecules. Cryst. Eng .Comm. 2012, 14, 751-757. 

32. Bruker AXS SAINT AND SMART+, Madison, WI, 2003. 

33. Farrugia, L. J. WinGX Suite for Small-Molecule Single-Crystal Crystallography. 
J. Appl. Crystallogr. 1999, 32 (4), 837-838. 

34. Burla, M.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G.; DeCaro, L., 
SIR2004:An improved Tool for Crystal Structure Determination and Refinement. J. Appl. 
Crystallogr. 2005, 38 (2), 381-388. 

35. Palatinus, L.; Chapuis, G. SUPERFLIP– A Computer Program for the Solution of 
Crystal Structures by Charge Fipping in Arbitrary Dimensions. J. Appl. Crystallogr. 
2007, 40, 786-790. 

36. Sheldrick, G. M. SHELXS97 and SHELXL97, University of Göttingen, Germany, 
1997. 

37. Palatinus, L.; Chapuis, G. SUPERFLIP - A Computer Program for the Solution of 
Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 
2007,  (40), 786-790. 

85 



www.manaraa.com

 
 

38. Szczepura, L.; Hitchcock, S.; Nora, G. (5S,6S)-3,4,5,6,-Tetrahydro-5-methyl-5-
phenyl-4-propyl-2H-1,3,4-oxadiazin-2-one. Acta Crystallogr., Sect. E: Struct. Rep. 
Online 2004, E60, 1467-1469. 

39. Brock, C. Past and Present. Presented at Midwest Organic Solid State Chemistry 
Symposium XXIII, University of Kentucky, Lexington, KY, 2013. 

40. Brock, C. P.; Dunitz, J. D. Towards a Grammar of Crystal Packing. Chem. Mater. 
1994, 6 (8), 1118-1127. 

41. Braun, B.; Kalf, I.; Englert, U. One of the Most Complex "Small Molecule 
Structures" Ever Reported: 16 Independent Molecules in the Asymmetric Unit for an 
ortho-Palladataed Primary Amine. Chem. Commun. 2011, 47, 3846-3848. 

42. Brock, C.; Schweizer, W.; Dunitz, J. D. On the Validity of Wallach's Rule: On the 
Density and Stability of Racemic Crystals Compared with Their Chiral Counterparts. J. 
Am. Chem. Soc. 1991, 113, 9811-9820. 

43. Springuel, G.; Norberg, B.; Robeyns, K.; Wouters, J.; Leyssens, T. Advances in 
Pharmaceutical Co-crystal Screening: Effective Co-crystal Screening through Structural 
Resemblance. Crys. Growth Des. 2011, 12, 475-484. 

44. Steed, J., Should Solid-State Molecular Packing Have to Obey the Rules of 
Crystallographic Symmetry? CrystEngComm 2003, 5, 169-179. 

45. MacRae, C.; Bruno, I.; Chisholm, J.; Edgington, P.; McCabe, P.; Pidcock, E.; 
Rodriquez-Monge, L.; Taylor, R.; van de Streek, J.; Wook, P., Mercury CSD 2.0-New 
Features for the Visualization and Investigation of Crystal Structures. J. Appl. 
Crystallogr. 2008, 41 (2), 466-470. 

46. Clegg, W. Introduction to Symmetry and Diffraction. In Crystal Structure 
Analysis: Principles and Practice, 2 ed.; Clegg, W., Ed. Oxford University Press: New 
York, 2009; p 18. 

47. Nelson, S. Twinning, Polymorphism, Polytypism, Pseudomorphism. 
http://www.tulane.edu/~sanelson/eens211/twinning.htm  (accessed May, 16). 

48 Liang, J. K. Small Molecule Crystallization, Illinois Institute of Technology, D. o. 
C. E., Ed. 2003;  

49        McCrone, W. Polymorphism. In Physics and Chemistry of the Organic Solid 
State, Fox, D.; Labes, M.; Weissberger, A., Eds. Wiley-Interscience: New York, 1965; 
Vol. 2, pp 725-767. 

 

 

86 


	Examination of Quasienantiomers of Oxadiazinanones Which Fail to Fractionally Crystallize
	Recommended Citation

	tmp.1429824605.pdf.yuCqb

